Original BKh-2


1 Белки: определение, свойства, строение, классификация. Характеристика пептидной связи. Простые и сложные белки. Биологическая роль белков.
Белки – это высокомолекулярные азотсодержащие органические вещества, состоящие из аминокислот, соединённых в цепи с помощью пептидных связей и имеющих сложную структурную организацию.
Биологическая роль белков:
1. каталитическая (выполняют ферменты);
2. структурная, т.е. белки являются основным компонентом клеточных структур;
3. регуляторная (выполняют белки-гормоны);
4. рецепторная, т.е. рецепторы клеточных мембран имеют белковую природу;
5. транспортная – белки участвуют в транспорте липидов, токсических веществ, кислорода и т.д.;
6. опорная – выполняет белок коллаген;
7. энергетическая. Заключается в том, что при окислении 1г белка выделяется 17,6 кДж (4,1ккал) энергии;
8. сократительная – её выполняют белки актин и миозин;
9. генно-регуляторная – её выполняют белки гистоны, участвуя в регуляции репликации;
10. имуннологическая – её выполняют белки антитела;
11. гемостатическая – участвуют в свёртывании крови, препятствуют кровотечению;
антитоксическая, т.е. белки связывают многие токсические вещества (особенно соли тяжёлых металлов) и препятствуют развитию интоксикации в организме.
Физико-химические свойства белков:
Структура белка определяет его свойства. Существует несколько групп свойств.
I. Электрохимические свойства белков:
1. белки - амфотерные полиэлектролиты (амфолиты). Это достигается за счет наличия концевых СОО- и NH3+ групп, а также ионогенных групп боковых радикалов (ГЛУ, АСП, ЛИЗ, АРГ, ГИС)
2. буферность белков (поддержка рН среды). При физиологических значениях рН буферные свойства ограничены и обусловлены наличием кислотных и основных групп. Наибольшим буферным действием обладает гистидин, которого много в гемоглобине, за счет чего последний является мощным буфером крови;
3. наличие заряда в белковой молекуле. Обусловлено соотношением кислых и основных АК, а также ионизацией бокового радикала. Степень ионизации зависит от рН среды. Так, если среда кислая, то ионизация СООН групп заторможена и белок приобретает «+» заряд. В щелочной среде заторможена ионизация NH2 групп и белок заряжается «--».
II. Коллоидные свойства.
Растворы белков чаще всего достаточно устойчивы. Хорошая растворимость приближает растворы белков к истинным растворам, но высокая молекулярная масса придает им свойства коллоидных систем
III. Гидрофильные свойства.
Белки хорошо связываются водой, обусловлено наличием полярных гидрофильных групп. Вода может проникать в белок и связываться с его гидрофильными группами, вызывая его набухание. Также возможно образование гидратной оболочки. 100г белка связывают 30-35г воды.
IV. Растворимость белков.
Чем больше полярных групп содержит белок, тем больше он растворим. Глобулярные белки растворяются лучше. Растворимость белков зависит от 2-х факторов:
- наличия заряда;
- образования гидратной оболочки.
V. Денатурация.Под действием внешних факторов нарушается высшие уровни (вторичный, третичный, четвертичный) структурной организации белков с сохранением первичной структуры. При этом белок теряет свои нативные свойства. При денатурации разрываются связи, удерживающие высшие структурные организации.
Классификация белков:
В настоящее время насчитывается ~5 млн. белков. Их пытались классифицировать по физико-химическим свойствам, например по растворимости, плотности, форме молекул (глобулярные и фибриллярные), локализации и происхождению, АК-составу, биологической роли. Однако все эти классификации не соответствуют тем знаниям о белках, которые известны на сегодняшний день.
В основе классификации лежит химический состав белка. По этому признаку все белки делят на простые и сложные.
Простые белки – это белки, образованные только полипептидными цепями, состоящие только из АК-ных остатков.
Сложные белки имеют две части: белковая или пептидная построена из АК-ных остатков, и небелковая (простетическая) часть.
К простым белкам относят: гистоны, протамины, альбумины, глобулины, глютелины, проламины и протеноиды (склеропротеины).
К сложным белкам относят: хромопротеины, нуклеопротеины, фосфопротеины, углевод-белковые и липид-белковые комплексы.
Связь белковой части с небелковой может быть ковалентной, ионной и др.
Характеристика сложных белков
Они имеют белковую и небелковую (простетическую) части. Белковую часть составляет полипептид, построенный из АК-остатков. В состав небелковой части может входить: гем, металл, остаток фосфорной кислоты, углеводы, липиды и т.д.
Пептидная связь - это соединение карбоксильной группы одной аминокислоты с аминогруппой другой аминокислоты.      По структуре молекулы белков представляют собой цепи, построенные из аминокислот. Карбоксильные группы одной аминокислоты,  –COOH  и аминогруппа другой аминокислоты,  –NH2  могут соединяться. Каждое такое соединение называютпептидной связью, компоненты пептидной связи называют аминокислотными остатками, а получившееся при соединении двух и более аминокислот вещество называют пептидом.
2 Уровни структурной организации белка.
Выделяют четыре уровня структурной организации белков: первичный, вторичный, третичный и четвертичный.
Первичная структура белка
Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты 
Вторичная структура представляет собой способ укладки полипептидной цепи в упорядоченную структуру благодаря образованию водородных связей между пептидными группами одной цепи или смежными полипептидными цепями. По конфигурации вторичные структуры делятся на спиральные (α-спираль) и слоисто-складчатые (β-структура и кросс-β-форма). Третичной структурой белка называется способ укладки полипептидной цепи в пространстве. По форме третичной структуры белки делятся в основном на глобулярные и фибриллярные. Глобулярные белки чаще всего имеют эллипсовидную форму, а фибриллярные (нитевидные) белки — вытянутую (форма палочки, веретена).
Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру. К ним относятся миоглобин — белок мышечной ткани, участвующий в связывании кислорода, ряд ферментов (лизоцим, пепсин, трипсин и т. д.). Однако некоторые белки построены из нескольких полипептидных цепей, каждая из которых имеет третичную структуру. Для таких белков введено понятие четвертичной структуры, которая представляет собой организацию нескольких полипептидных цепей с третичной структурой в единую функциональную молекулу белка. Такой белок с четвертичной структурой называется олигомером, а его полипептидные цепи с третичной структурой — протомерами или субъединицами
3 Химическая природа ферментов. Строение простых и сложных ферментов. Кофакторы и коферменты. Функционально активные центры ферментов.
Ферменты – это биологические катализаторы белковой природы. В одной клетке до 10 тыс. молекул фермента, которые катализируют 2000 ферментативных реакций. 1800 тыс. ферментов выделены, но их строение не расшифровано. Старое название ферментов – энзимы, а наука, их изучающая – энзимология.
По своей химической природе ферменты – это белки, они имеют несколько уровней структурной организации и обладают всеми другими свойствами белков. Очень большое количество ферментов не имеют 4-ую структуру, т.е. являются олигомерами.
Ферменты могут быть простыми и сложными. Простые состоят только из полипептидной цепи, а сложные имеют пептидную (апофермент) и небелковую части (кофермент). Далее идёт рис. [апофермент+кофермент=холофермент – обладает полноценной функциональной активностью]. По отдельности ни апофермент, ни кофермент, не выполняют функции так, как холофермент.
Строение ферментов. В пространственной структуре фермента условно выделяют ряд участков, которые выполняют соответствующие им функции. Активный центр (АЦ) – участок в молекуле фермента, где происходит связывание и химическое превращение субстрата (S). Субстрат – вещество, подвергающееся химическому превращению (например, для фермента лактатдегидрогеназы (ЛДГ) субстратом будет молочная кислота). В активном центре выделяется контактный участок и каталитический участок. Контактный участок – это место активного центра, в котором происходит связывание фермента с субстратом по принципу комплементарности, т.е. именно контактный участок обеспечивает специфическое сродство субстрата ферменту. Образовавшийся комплекс носит название фермент-субстратный комплекс.
4 Механизм действия ферментов
Молекулярные эффекты действия ферментов
1) Эффект концентрирования – это адсорбирование на поверхности молекулы фермента молекул реагирующих веществ, т.е. субстрата, что приводит к их лучшему взаимодействию. Пр.: электростатическое притяжение – скорость реакции может возрасти в 103 раз.
2) Эффект ориентации – это специфическое связывание субстрата с контактными участками активного центра фермента, которое обеспечивает взаимную ориентацию молекул субстрата и их сближение для более выгодного воздействия каталитических групп в активном центре. За счет эффекта ориентации скорость реакции возрастает в 103-104 раз. [рис. эффекта ориентации: поворот двух кругов вырезами друг к другу]
3) Эффект натяжения (теория «дыбы»). Субстрат до присоединения к ферменту находится в расслабленной конформации, а после связывания с ферментом деформируется или растягивается. Места деформации легче атакуются каталитическим центром фермента. [рис. эффекта дыбы: субстрат растягивается над ферментом]
4) Эффект вынужденного соответствия (прилегания). Не только субстрат претерпевает изменение конформации, но и фермент, особенно в активном центре, после связывания субстрата меняет свою конформацию, которая становится более комплементарной субстрату.
Теория Фишера: фермент подходит к субстрату как ключ к замку.
Теория Котланда: фермент и субстрат взаимодействуют между собой по принципу рука–перчатка. Истинная комплементарность фермента к субстрату достигается после изменения конформации и субстрата и фермента.

5 Специфичность действия ферментов. Виды специфичности.
Различают два главных вида специфичности ферментов: субстратную специфичность и специфичность действия.
Субстратная специфичность, это способность фермента катализировать превращения только одного определенного субстрата или же группы сходных по строению субстратов. Определяется структурой адсорбционного участка активного центра фермента.
Различают 3 типа субстратной специфичности:
абсолютная субстратная специфичность - это способность фермента катализировать превращение только одного, строго определенного субстрата;
относительная субстратная специфичность - способность фермента катализировать превращения нескольких, сходных по строению, субстратов;
стереоспецифичность - способность фермента катализировать превращения определенных стереоизомеров.
Например, фермент оксидаза L-аминокислот способен окислять все аминокислоты, но относящиеся только к L-ряду. Таким образом, этот фермент обладает относительной субстратной специфичностью и стереоспецифичностью одновременно.
Специфичность действия - это способность фермента катализировать только определенный тип химической реакции.
В соответствии со специфичностью действия все ферменты делятся на 6 классов. Классы ферментов обозначаются латинскими цифрами. Название каждого класса ферментов соответствует этой цифре.
6 Регуляция активности ферментов. Путь их активации и ингибирования.
Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают:
- активаторы – вещества, увеличивающие скорость реакции;
- ингибиторы – вещества, уменьшающие скорость реакции.
Активация ферментов. Различные активаторы могут связываться либо с активным центром фермента, либо вне его. К группе активаторов, влияющих на активный центр, относятся: ионы металла, коферменты, сами субстраты.
Активация с помощью металлов протекает по различным механизмам:
- металл входит в состав каталитического участка активного центра;
- металл с субстратом образуют комплекс;
- за счет металла образуется мости между субстратом и активным центром фермента.
Субстраты также являются активаторами. При увеличении концентрации субстрата скорость реакции повышается. по достижению концентрации насыщения субстрата эта скорость не изменяется.
Ингибирование ферментов. Ингибитор – это вещество, вызывающее специфическое снижение активности фермента. Следует различать ингибирование и инактивацию. Инактивация – это, например, денатурация белка в результате действия денатурирующих агентов.
По прочности связывания ингибитора с ферментом ингибиторы делят на обратимые и необратимые.
Необратимые ингибиторы прочно связаны и разрушают функциональные группы молекулы фермента, которые необходимы для проявления его каталитической активности. Все процедуры по очистке белка не влияют на связь ингибитора и фермента. Пр.: действие фосфорорганических соединений на фермент – холинэстеразу. Хлорофос, зарин, зоман и др. фосфорорганические соединения связываются с активным центром холинэстеразы. В результате происходит фосфорилирование каталитических групп активного центра фермента. В следствии молекулы фермента, связанные с ингибитором, не могут связываться с субстратом и наступает тяжелое отравление.
Также выделяют обратимые игнибиторы, например прозерин для холинэстеразы. Обратимое ингибирование зависит от концентрации субстрата и ингибитора и снимается избытком субстрата.
По механизму действия выделяют:
- конкурентное ингибирование;
- неконкурентное ингибирование;
- субстратное ингибирование;
- аллостерическое.
7 Медицинская энзимология, энзимопатии и энзимодиагностика.
Энзимология (энзимы + греч. logos учение) — раздел биохимии, посвященный изучению строения, механизма каталитического действия и молекулярной структуры ферментов. Энзимология занимается решением проблемы очистки и препаративного выделения ферментов, их классификацией, изучением кинетики ферментативного катализа (Кинетика биологических процессов), специфичности, ингибирования и активации ферментов, исследованием их кофакторов ( Коферменты), а также процесса биосинтеза ферментов, их биологии, практического применения, в т. ч. для энзимодиагностики (Ферменты) и энзимотерапии. Энзимология тесно связана с химией, физической химией, биоорганической химией, биофизической химией, молекулярной биологией, микробиологией, генетикой, фармакологией, токсикологией, физиологией, биофизикой, биотехнологией ( т. 29, доп. материалы) и хим. технологией. Энзимология и медицина. Недостаточность тех или иных ферментов вызывает в организме отклонения от физиол. нормы, получившие название энзимопатии.
Энзимопатии по предложению А. А.
Покровского делят на:
1) наследственные, при которых синтез какого-либо фермента не происходит вообще или протекает с недостаточной интенсивностью или фермент синтезируется неактивным, потому что нарушено образование активного фермента из его профермента либо холофермента из ферментного белка (апофермента) и простетической группы (кофермента) ит. д.;
2) токсические, возникающие при избирательном ингибировании отдельных ферментов, при специфическом экзогенном избирательном торможении биосинтеза отдельных ферментов или общем угнетении биосинтеза белков;
3) алиментарные, развивающиеся нри витаминной недостаточности, нехватке белка, микроэлементов или при несбалансированном питании ( Питание);
4) энзимопатии, вызванные нарушением нейрогуморальной регуляции;
5). энзимопатии, связанные с нарушением внутриклеточной организации ферментативных процессов.
Величина активности ряда ферментов (ок. 40) в крови, моче, фибробластах, эритроцитах и др. является важным диагностическим тестом. Изменение активности ферментов при патол. состояниях может быть либо причиной заболевания (энзимопатия), либо его следствием. Кроме того, многие ферменты используются как хим. реактивы для определения составных частей тканей и жидкостей организма, напр., уреазу применяют при количественном определении мочевины, глюкозооксидазу — для определения глюкозы в моче и крови ( Городецкого методы), холинэстеразу используют для определения остаточных количеств фосфор органических соединений, в т. ч. ив биологических субстратах.
Ферменты все шире применяют в качестве лекарственных средств. Энзимология изучает их фармакол. свойства, разрабатывает методы иммобилизации ферментов на нейтральных носителях и др. В фармакотерапии возрастает роль ферментных препаратов на основе иммобилизованных ферментов (стрептокиназы, стрептодеказы и др.), а также ферментов, вводимых в организм с помощью липосом. Ферментные препараты используют для возмещения дефицита ферментов при заместительной терапии; напр., при некоторых формах гастрита назначают пищеварительные ферменты желудка и поджелудочной железы. Протеолитические ферменты ( Пептид-гидролазы) применяют при лечении гнойно-воспалительных заболеваний или тромбозов. Однако при лечении наследственных энзимопатии ( Наследственные болезни) ферментные препараты пока неэффективны.
8. Биологическое окисление. Характеристика ферментов и коферментов. 
Ферменты, катализирующие окислительновосстановительные реакции, называют оксидоредуктазами. Их разделяют на 5 групп.
1) Оксидазы. Истинные оксидазы катализируют удаление водорода из субстрата, используя при этом в качестве акцептора водорода только кислород. Они неизменно содержат медь, продуктом реакции является вода (исключение составляют реакции, катализируемые уриказой и моноаминоксидазой, в результате которых образуется. 2) Аэробные дегидрогеназы—ферменты, катализирующие удаление водорода из субстрата; в отличие от оксидаз они могут использовать в качестве акцептора водорода не только кислород, но и искусственные акцепторы, такие, как метиленовый синий. Эти дегидрогеназы относятся к флавопротеинам, и продуктом катализируемой ими реакции является перекись водорода, а не вода.
Анаэробные дегидрогеназы—ферменты, ката-, лизирующие удаление водорода из субстрата, но не способные использовать кислород в качестве акцептора водорода. В этот класс входит большое число ферментов. Они выполняют две главные функции.
9 Электронно-транспортная цепь. Строение, механизм действия.
В многоэтапной цепи реакций дыхания происходит постепенное, ступенчатое высвобождение энергии органических веществ и закрепление ее в молекулах АТФ. Эта энергия используется на процессы биосинтеза, поддержания структуры клеток, рост, поглощение и передвижение веществ и другие нужды растений. Постепенность высвобождения энергии способствует более полному ее использованию на указанные процессы с высоким КПД.
Дыхание является сложным окислительно-восстановительным процессом. Вместе с кислородом, который участвует только в последних этапах дыхания, активное участие принимает водород. Именно процесс дегидрирования (отщепления водорода от органического вещества) и перенос электронов составляет основу процесса дыхания. В большинстве реакций кислород не участвует, то есть процесс дыхания не аналогичен горению, когда вся энергия рассеивается в виде тепла.
При окислении веществ происходит потеря ими протонов и электронов. В живой клетке акцепторов протонов и электронов много. Если последним акцептором протонов протонов и электронов служит кислород, то это дыхание, если органическое вещество – брожение.
Процесс дыхания подразделяют на внешний (поглощение кислорода и выделение углекислого газа) – газообмен, и внутренний (сложные биохимические реакции, результат которых – постепенное высвобождение энергии органических веществ и закрепление ее в АТФ. Схема работы дыхательной цепи митохондрий
ЭТЦ– это передача электронов от восстановленных субстратов на кислород, сопровождаемая переносом через мембрану ионов Н+, или окислительно-восстановительная водородная помпа.
Окисление НАД и ФАД происходит в электронно-транспортной цепи (ЭТЦ) митохондрий. В результате работы ЭТЦ протоны и электроны передаются на конечный акцептор – кислород с образованием воды:
4Н+ + 4е + О2= 2Н2О
Вода – второй конечный продукт дыхания. Энергия окисления НАДхН2и ФАДхН2аккумулируется в АТФ. Ферменты цикла Кребса расположены в матриксе митохондрий. Общее полное уравнение процесса дыхания:
С6Н12О6 + 6О2+ 6Н2О + 38АДФ + 38Н3РО4 = 6СО2 + 12Н2О + 38АТФ
Общая схема брожения
В анаэробных условиях у растений происходит диссимиляция по типу спиртового брожения. При этом затрачивается во много раз больше органических веществ, чем при дыхании, при этом образуются ядовитые вещества (ацетальдегид, этанол). Поэтому без кислорода растения истощаются и отравляются. Спиртовое брожение широко распространено у микроорганизмов, например у дрожжей (сумчатые грибы). Они хорошо переносят анааэробные условия, но размножаются только в аэробной среде.
Первый этап сбраживания дрожжами глюкозы аналогичен гликолизу. Образующаяся ПВК под действием ферментов распадается на ацетальдегид, который восстанавливается до этанола, и молекулу углекислого газа.
10 Роль кислорода в обеспечении организма энергией.
Кислород - наиболее распространенный в окружающей среде химический элемент. Он составляет 89% массы воды, 23% массы воздуха и около 50% массы природных минералов.
Животные и растения получают необходимую для жизни энергию за счет биологического окисления различных веществ кислородом, поступающим в организмы при дыхании.
Наиболее эффективно обеспечение живых организмов кислородом и использование его в окислительно-восстановительных процессах происходит в тех случаях, когда содержание кислорода в воздухе, который поглощают живые организмы, составляет 20,8% (лучше - при несколько более высоком содержании: на 0,5-1,0%).
Роль кислорода для здоровья человека. Кислород: повышает умственную работоспособность; повышает устойчивость организма к стрессам и повышенным нервным нагрузкам; поддерживает уровень кислорода в крови; улучшает согласованность работы внутренних органов; повышает иммунитет; способствует снижению веса. Регулярное потребление кислорода в сочетании с двигательной активностью, приводит к активному расщеплению жиров; нормализуется сон: он становится более глубоким и продолжительным, уменьшается период засыпания и двигательной активности
Проблема кислородной задолженности (гипоксии)
К сожалению, требуемое для здоровья человека содержание кислорода в наше время в природных условиях реализуется лишь в городских парках (20,8%), загородных лесах (21,6%) и на берегах морей и океанов (21,9%). В то же время, в городских помещениях (квартирах и офисах) содержание кислорода в воздухе значительно меньше (20%), что приводит к возникновению у людейкислородной недостаточности (гипоксии).
Ситуацию усугубляет выбрасываемый промышленностью и автомобильным транспортом угарный газ (СО), который является конкурентом кислорода за связывание с гемоглобином крови. Накапливаясь в атмосфере воздуха городов, он еще сильнее затрудняет усвоение кислорода организмом. Дело в том, что СО (угарный газ) в 200 раз быстрее связывается с гемоглобином (транспортным средством для кислорода), то есть в 200 раз быстрее занимает место молекул кислорода. Эксперименты, проведенные в США, показали, что у водителей, проводящих большое количество времени за рулем, нарушаются реакции элементарно необходимые для управления автомобилем.
11 Механизм окислительного фосфорилирования (теория Митчелла).
Перенос электронов по дыхательной цепи приводит к выбросу протонов в межмембранное пространство из митохондриального матрикса. В результате матрикс защелачивается, а межмембранное пространство - закисляется.
Такой градиент, при котором концентрация Н больше в межмембранном пространстве, чем внутри митохондрий, обладает потенциальной энергией. Хемиосмотическая гипотеза Митчелла и Скулачева постулирует далее, что ионы Н из межмембранного пространства устремляются внутрь в митохондриальный матрикс, через специальные каналы в молекулах F0F1 - АТФ-азы. В этом случае они перемещаются по концентрации и во время их перехода через молекулы АТФ-азы выделяется свободная энергия. Именно эта энергия и служит движущей силой для сопряженного синтеза АТФ из АДФ и фосфата. Эта модель требует, чтобы:
1. Переносчики протонов и АТФ-аза работали векторно, т.е. чтобы они были определенным образом ориентированы по отношению к двум поверхностям мембраны.
2. Внутренняя мембрана была совершенно непроницаема для протонов, поскольку для протонного градиента необходимо наличие замкнутого компартамента.
Основной смысл предложенного механизма состоит в том, что первым запасающим энергию актом является перенос протонов через внутреннюю митохондриальную мембрану.
Гипотеза Митчелла о сопряжении окисления и фосфорилирования протонным градиентом получила в настоящее время множество подтверждений.
АТФ-синтаза или F0F1- АТФ-синтаза, ферментативная система , встроенная во внутреннюю мембрану митохондрий состоит из двух главных компонентов. F1-напоминает круглую дверную ручку, обращенную грибовидным выростом в матриксе и обладающий способностью синтезировать АТФ из АДФ и ФН.
12 Переваривание и всасывание в желудочно-кишечном тракте. Переваривание и всасывание углеводов Основными пищевыми углеводами являются крахмал, гликоген, а также дисахариды - лактоза, сахароза, мальтоза. Их переваривание заклю¬чается в расщеплении поли-, олиго- и дисахаридов до моносахаридов под влиянием ферментов-гликозидаз желудочно-кишечного тракта.Переваривание крахмала начинается уже в ротовой полости под влиянием амилазы слюны. Однако в основном его гидролиз с образованием фрагментов крахмала - декстринов - происходит в тонком кишечнике под действием а-амилазы поджелудочной железы (амило-1,4-гликозидазы):Крахмал -» декстрины -> олигосахариды -» мальтоза + изомальтоза Образующиеся мальтоза и изомальтоза, а также другие дисахариды, поступающие с пищей, гидролизуются специфическими энзимами-гликозидазами на поверхности ворсинок кишечных клеток:Мальтоза —> 2 а-глюкоза; фермент-.мальтоза (а-1,4-гликозидаза), Изомальтоза —> 2 а-глюкоза; фермент - изомалыпаза (а-1,6-гликозидаза), Сахароза -» а-глюкоза + Р-фруктоза; фермент - сахароза, Лактоза -» а-глюкоза + р-галактоза; фермент - лактоза.Глюкоза, галактоза и фруктоза попадают в клетки кишечника и далее в кровь путем облегченной диффузии, с участием специальных переносчи¬ков. Глюкоза и галактоза могут всасываться и с помощью активного транспорта (симпорт моносахарщНМа+) с затратой энергии АТФ; этот ме¬ханизм позволяет транспортировать моносахариды и против градиента концентрации, если их содержание в полости кишечника невелико. Перенос глюкозы из крови в клетки большинства тканей зависит от гормона поджелудочной железы инсулина, который контролирует работуембранных ферментов-переносчиков. Исключение составляют два органа • печень и мозг; скорость поступления глюкозы в их клетки зависит только от ее концентрации в крови.
13 Метаболизм гликогена. Гликогеновые болезниУпрощенная схема метаболизма гликогена. 1 — гексокиназа (глюкокиназа), 2 — глюкозо-6-фосфатаза, 3 — фосфоглюкомутаза, 4 — глюкозо-1-фосфат-уридилилтрансфераза, 5 — гликогенсинтетаза, 6 — 1,4-альфа-глюкан-ветвящий фермент, 7 — фосфорилаза, 8 — амило-1,6-глюкозидаза.
1. Синтез гликогена. Исходное вещество для синтеза гликогена — глюкозо-6-фосфат. Глюкозо-6-фосфат образуется главным образом из глюкозы путем ее фосфорилирования. В печени, мышцах и других тканях эту реакцию катализирует гексокиназа. В печени имеется особая форма гексокиназы — глюкокиназа, которая вступает в действие только при сильном повышении концентрации глюкозы в крови. Глюкозо-6-фосфат может синтезироваться и из неуглеводных субстратов глюконеогенеза (лактата, пирувата, аминокислот). В мышцах глюкозо-6-фосфат синтезируется преимущественно из глюкозы крови. Печень способна к интенсивному глюконеогенезу, особенно после мышечной работы, когда в крови накапливается много лактата. Глюкозо-6-фосфат превращается в глюкозо-1-фосфат, из которого синтезируются цепи гликогена. Образование альфа-1,4-связей катализирует гликогенсинтетаза; для образования альфа-1,6-связей необходим1,4-альфа-глюкан-ветвящий фермент.
Глюкозо-6-фосфат превращается не только в гликоген. В печени при гидролизе глюкозо-6-фосфата образуется глюкоза. Эта реакция катализируется глюкозо-6-фосфатазой. Другие пути метаболизма глюкозо-6-фосфата: гликолиз (при этом образуются пируват и лактат) и пентозофосфатный путь (при этом образуется рибозо-5-фосфат). В норме между всеми процессами метаболизма глюкозо-6-фосфата поддерживается равновесие.
2. Расщепление гликогена (гликогенолиз) включает несколько этапов. Сначалафосфорилаза последовательно отщепляет остатки глюкозы от концов боковых цепей гликогена. При этом фосфорилируются альфа-1,4-связи и образуются молекулыглюкозо-1-фосфата. Фосфорилаза атакует боковую цепь до тех пор, пока не дойдет до точки, отстоящей на 4 остатка глюкозы от места ветвления (т. е. от альфа-1,6-связи). Затем вступает в действие система отщепления боковых цепей гликогена. Первый фермент этой системы — 4-альфа-D-глюканотрансфераза — отщепляет 3 из 4 остатков глюкозы и переносит их на свободный конец другой боковой цепи. Второй фермент —амило-1,6-глюкозидаза —отщепляет от главной цепи четвертый остаток глюкозы. После этого главная цепь гликогена становится доступной для фосфорилазы. В реакции, катализируемой амило-1,6-глюкозидазой, образуется глюкоза. У здоровых людей при голодании до 8% гликогена печени расщепляется амило-1,6-глюкозидазой до глюкозы, а 92% гликогена расщепляется фосфорилазой до глюкозо-1-фосфата. Под действиемфосфоглюкомутазыглюкозо-1-фосфат превращается в глюкозо-6-фосфат, при гидролизе которого в печени образуется глюкоза, поступающая в кровь. Таким образом, основное количество глюкозы при голодании образуется в печени из глюкозо-6-фосфата.
14 Анаэробный распад углеводов. Гликолиз (схема процесса), его значение.
Анаэробный процесс распада углеводов для мышц.Сущностьанаэробного распада углеводов заключается в расщеплении активированной глюкозы(фосфоглюкозы) на 2 молекулы молочной кислоты.  Образующаясяв ходе этого процесса энергия частично расходуется в виде тепла, частичнонакапливается (аккумулируется) в макроэргических соединениях типа АТФ.Пригликолизе образуются 2, а при гликогенолизе — 3 молекулы АТФ.Гликогенолизначинается с отщепления от гликогена под действием фермента фосфорилазы одноймолекулы глюкозы в виде глюкозо-1-фосфата, который превращается (изомеризуется)в глюкозо-6-фосфат.Пригликолизе глюкоза гексокиназой при участии АТФ (как источника энергии) превращается в глюкозо-6-фосфат.  Различиягликолиза и гликогенолиза существуют только на начальных стадиях, дообразования глюкозо-6-фосфорно- го эфира, с которого эти два процесса идутодинаково. В дальнейшем глюкозо-6-фосфат превращается во фруктозо-1,6-ди-фосфат, который под действием фермента альдолазы расщепляется на 2 молекулытриоз (моносахаридов, состоящих из 3 углеродных атомов) — фосфоглицериновыйальдегид и фосфодиоксиацетон (см. стр. 134).Ворганизме фосфодиоксиацетон способен превратиться в фосфоглицериновый альдегид.Такимобразом, можно говорить о дальнейшем распаде 2 молекул фосфоглицериновогоальдегида.Следующийэтап превращения является одним из важнейших процессов анаэробного распадауглеводов — это окислительно-восстановительная реакция, в ходе которой образуютсядве молекулы 1,3-дифосфоглицериновой кислоты. Это соединение важно тем, что входе реакции оно накапливает энергию, которая идет на образование двух молекулАТФ. Существенным моментом реакции также является выделение 4 атомов водорода,которые участвуют в гликолизе на последнем этапе — восстанавливаютпировиноградную кислоту до молочной (см. схему 2).1,3-Дифосфоглицериноваякислота отдает свою энергию на образование 2 молекул АТФ, а сама превращается в3-фосфоглицериновую кислоту. 
 
15 Виды брожения.
В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение – анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.
Впервые биологическую природу брожения открыл в 60-х годах 19 в. гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов.
Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктов — гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт.
При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей. Поэтому натуральные вина содержат не более 15% спирта. Главное преимущество чистых культур дрожжей заключается в том, что брожение виноградного сока протекает и заканчивается быстро, а отсутствие посторонней микрофлоры позволяет получать вина хорошего вкуса и аромата (с хорошим «букетом»). По окончании брожения молодое вино стабилизируют и дают ему созреть. Эти процессы занимают несколько месяцев, а при изготовлении высококачественных красных вин — даже несколько лет. В течение первого года во многих красных винах происходит второе, спонтанное брожение — яблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным.
Уксуснокислое брожение — биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затем — уксусная кислота. При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14,5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбоза — промежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива.
Молочнокислое брожение — широко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий (семействоLactobacillaceae)лактоза расщепляется на составляющие ее гексозы — глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота).
Маслянокислое брожение также широко встречается в природе. Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого брожения — азотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре. Многие из них являются анаэробами и относятся к роду Clostridium. Маслянокислое брожение — сложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктов — уксусная, молочная, пропионовая и другие кислоты.
Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода. Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами. Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлоза — единственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу.
16 Схема этапов аэробного расщепления глюкозы в тканях. Энергетический эффект.
Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.
1. Этапы аэробного гликолиза
В аэробном гликолизе можно выделить 2 этапа.
1 Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ. 2 Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ.
2. Реакции аэробного гликолиза
Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата
Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы.
Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. Данная реакция, так же, как гексокиназная, практически необратима, и, кроме того, она наиболее медленная из всех реакций гликолиза. Реакция, катализируемая фосфофруктокиназой, определяет скорость всего гликолиза, поэтому, регулируя активность фосфофруктокиназы, можно изменять скорость катаболизма глюкозы.Фруктозо-1,6-бисфосфат далее расщепляется на 2 триозофосфата: глицеральдегид-3-фосфат и дигидроксиацетонфосфат. Реакцию катализирует фермент фруктозобисфосфатальдолаза, или просто альдолаза. Этот фермент катализирует как реакцию альдольного расщепления, так и альдольной

Рис. 7-34. Пути катаболизма глюкозы. 1 - аэробный гликолиз; 2, 3 - общий путь катаболизма; 4 - аэробный распад глюкозы; 5 - анаэробный распад глюкозы (в рамке); 2 (в кружке) - стехиометрический коэффициент.

Рис. 7-35. Превращение глюкозо-6-фосфата в триозофосфаты.
конденсации, т.е. обратимую реакцию. Продукты реакции альдольного расщепления - изомеры. В последующих реакциях гликолиза используется только глицеральдегид-3-фосфат, поэтому дигидроксиацетонфосфат превращается с участием фермента триозофосфатизомеразы в глицероальдегид-3-фосфат (рис. 7-35).
В описанной серии реакций дважды происходит фосфорилирование с использованием АТФ. Однако расходование двух молекул АТФ (на одну молекулу глюкозы) далее будет компенсировано синтезом большего количества АТФ.
Превращение глицеральдегид-3-фосфата в пируват
Эта часть аэробного гликолиза включает реакции, связанные с синтезом АТФ. Наиболее сложной в данной серии реакций является реакция превращения глицеральдегид-3-фосфата в 1,3-бисфосфоглицерат. Это превращение - первая реакция окисления в ходе гликолиза. Реакцию катализирует глицеральдегид-3-фосфатдегидрогеназа, которая является NAD-зависимым ферментом. Значение данной реакции заключается не только в том, что образуется восстановленный кофермент, окисление которого в дыхательной цепи сопряжено с синтезом АТФ, но также и в том, что свободная энергия окисления концентрируется в макроэргической связи продукта реакции. Глицеральдегид- 3 -фосфатдегидрогеназа содержит в активном центре остаток цистеина, сульфгидрильная группа которого принимает непосредственное участие в катализе. Окисление глицеральдегид-3-фосфата приводит к восстановлению NAD и образованию с участием Н3РО4 высокоэнергетической ангидридной связи в 1,3-бисфосфоглицерате в положении 1. В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ. Фермент, катализирующий это превращение, назван по обратной реакции фосфоглицераткиназой (киназы называются по субстрату, находящемуся в уравнении реакции по одну сторону с АТФ). Данная серия реакций показана на рис. 7-36.
Образование АТФ описанным способом не связано с дыхательной цепью, и его называют субстратным фосфорилированием АДФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. В следующих реакциях происходят внутримолекулярные перестройки, смысл которых сводится к тому, что низкоэнергетический
Рис. 7-36. Превращение глицеральдегид-3-фосфата в 3-фосфоглицерат.
фосфоэфир переходит в соединение, содержащее высокоэнергетический фосфат. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. Название дегидратирующего фермента дано по обратной реакции. В результате реакции образуется замещённый енол - фосфоенолпируват. Образованный фосфоенолпируват - макроэргическое соединение, фосфатная группа которого переносится в следующей реакции на АДФ при участии пируваткиназы (фермент также назван по обратной реакции, в которой происходит фосфорилирование пирувата, хотя подобная реакция в таком виде не имеет места).
Превращение фосфоенолпирувата в пируват - необратимая реакция. Это вторая в ходе гликолиза реакция субстратного фосфорилирования. Образующаяся енольная форма пирувата затем неферментативно переходит в более термодинамически стабильную кетофор-му. Описанная серия реакций представлена на рис. 7-37
Рис. 7-37. Превращение 3-фосфоглицерата в пируват.
17 Окислительное декарбоксилирование пирувата.
Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс»[3].
На I стадии этого процесса пируват теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидролипоилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением[3].
На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е2. При участии фермента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2дигидролипоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+[3].
Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложногомультиферментного комплекса) 3 фермента (пируватдегидрогеназа, дигидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 коферментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, липоамид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД)[3]. Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки.
Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:
Пируват + НАД+ + HS-KoA = Ацетил-КоА + НАДН + Н+ + СO2.
Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.
Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток[3].
Клинические аспекты метаболизма пирувата
Арсенат, а также ионы ртути образуют комплексы с —SH-группами липоевой кислоты и ингибируют пируватдегидрогеназу; при недостаточном содержании тиамина в диете активность пируватдегидрогеназы снижается и пируват может накапливаться. Недостаток тиамина возникает у алкоголиков с нарушенным режимом питания; при введении им глюкозы может происходить быстрое накопление пирувата и лактата, приводящее к лактатацидозу, нередко с летальным исходом. У больных с наследственной недостаточностью пируватдегидрогеназы также может развиваться лактатацидоз, особенно после глюкозной нагрузки. Зарегистрированы мутации практически всех ферментов углеводного метаболизма, и в каждом случае их следствием является заболевание человека[4].
18 Цикл трикарбоновых кислот (схема процесса), его значение.Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл, цикл лимонной кислоты) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ.
Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.
Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоенНобелевской премии (1953 год).
У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляетсукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.
19 Глюконеогенез (схема процесса), его регуляция. Цикл Кори.
Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пи-ровиноградная кислоты, так называемые гликогенные аминокислоты, гли-церол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот. Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие фермент
Глюконеогенез осуществляется в направлении, обратном гликолизу. Большинство стадий этих двух процессов совпадают и катализируются одинаковыми ферментами. Исключение — необратимые р-ции II-IV (см. схему в ст. Гликолиз), к-рые в глюконеогенезе протекают обходными путями. Так, синтез фосфоенол-пировиноградной к-ты из пировиноградной (р-ция IV) осуществляется след. образом: где АТФ-аденозинтрифосфат, АДФ-аденозиндифосфат, НАДН и НАД-соотв. восстановленная и окисленная формы кофермента никотинамидадениндинуклеотида, ГТФ - гуанозинтрифосфат, ГДФ-гуанозиндифосфат. Первая и вторая стадии этого процесса протекают в митохондриях. Образовавшаяся яблочная к-та способна проникать через мембрану митохондрий в цитоплазму и участвовать в дальнейших превращениях. У растений и бактерий обнаружены ферменты, осуществляющие синтез фосфоенолпиро-виноградной к-ты без промежут. стадий, а у нек-рых животных он протекает полностью в митохондриях, откуда эта к-та поступает в цитоплазму для участия в дальнейших р-циях глюконеогенеза. В цитоплазме может осуществляться также восстановительное карбоксилирование пировиноградной к-ты с образованием яблочной. Фруктозо-6-фосфат образуется в результате необратимого гидролиза фруктозо-1,6-дифосфата. Глюкозо-6-фосфат дефосфорилируется с образованием глюкозы или превращ. в глюкозо-1-фосфат-ключевое промежут. соед. в синтезе углеводов. Синтез одной молекулы глюкозы м. б. выражен суммарным ур-нием: 2СН3С(O)СООН + 2НАДН + 4АТФ + 2ГТФ -> -> С6Н12О6 + 2НАД + 4АДФ + 2ГДФ + 6Н3РО4 Кроме пировиноградной или молочной к-ты предшественниками глюкозы м. б. глицерин, а такжеаминокислоты, к-рые в результате превращений, происходящих в цикле трикарбоновых к-т и глиоксилатном цикле, образуют пировиноградную и фосфоенолпировиноградную к-ты. Растения и микроорганизмы могут синтезировать углеводы также из жирных к-т через ацетилкофермент А. Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках.Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках.цикл кориНачинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу.
Итак печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма.

20 Цикл пентозофосфатов (схема окислительной стадии процесса). Биологическая роль:
Окислительный этап образования пентоз и неокислительный этап составляют вместе циклический процесс. Такой процесс можно описать следующим уравнением: 6 глюкозо-6-фосфат + 12 НАДФ+ 2h2o = 6 CO2 + 12 НАДФ․Н + 12H+ + 5 глюкозо-6-фосфат. Это означает что из 6 молекул образуются 6 молекул рибулозо-6фосфат и 6 молекул со2. Ферменты неокислительной фазы превращают 6 молекул рибулозо-5фосфат в 5 молекул глюкозы. При последовательном проведении этих реакций единственным полезным продуктом является НАДФ, образующийся в окислительной фазе пентозофосфатного пути. Такой процесс называется пентозофостатный цикл. Протекание пентозофосфатного цикла позволяет клеткам продуцировать надф , необходимый для синтеза жиров, не накапливая пентозы. Энергия, выделяющаяся при распаде глюкозы, трансформируется в энергию высокоэнергетического донора водорода – НАДФ. Гидрированный Надф сужит источником водорода для восстановительных синтезов , а энергия надф преобразуется и сохраняется во вновь синтезированных веществах , напр в жирных кислотах , высвобождается при их катаболизме и используется их клеткам.
21 Гормональная регуляция углеводного обмена:
Основным показателем состояния углеводного обмена является содержание глюкозы в крови. В норме содержание глюкозы составляет 3,5 – 5,5 ммоль/л.
Снижение содержания глюкозы ниже 3,3 ммоль/л называется гипогликемия. При снижении содержания глюкозы ниже 2,7 ммоль/л развивается грозное осложнение – гипогликемическая кома. Содержание глюкозы в крови выше 6 ммоль/л называется гипергликемией. Если содержание глюкозы превышает 50 ммоль/л, развивается гипергликемическая кома. При увеличении содержания глюкозы в крови выше 10 ммоль/л глюкоза появляется в моче и возникает глюкозурия.
Инсулин – единственный гормон гипогликемического действия (снижает уровень глюкозы).
Адреналин, клюкагон, АКТГ, СТГ, глюкокортикоиды – гипергликемические гормоны(повышают уровень глюкозы).
Механизм действия инсулина
1.  Повышает проницаемость клеточных мембран для глюкозы, способствуя переходу ее из крови в ткани;
2.задерживает глюкозу в клетках, активируя гексокиназу («гексокиназная ловушка глюкозы»);
3. Усиливает распад глюкозы в мышцах путем индукции синтеза регуляторных ферментов гликолиза – гексокиназы, фосфофруктокиназы, пируваткиназы;
4.  В печени активирует гликогенсинтетазу, усиливает синтез гликогена – гликогенез.
5. Подавляет синтез ферментов глюконеогенеза, препятствует избыточному катаболизму жиров и белков и переходу их в углеводы. Инсулин регулирует активность ферментов на генетическом уровне – является индуктором синтеза ферментов гликолиза и репрессором синтеза ферментов глюконеогенеза.
6.  Инсулин активирует дегидрогеназы пентофосфатного пути.
Инсулин активирует:
1.  Ферменты гликолиза: гексокиназу, фосфофруктокиназу, пируваткиназу.
2.   Ферменты пентозофосфатного пути: глюкозо-6-фосфатдегидрогеназу, 6-фосфоглюконатдегидрогеназу.
3.   Ферменты гликогенеза (синтез гликогена): гликогенсинтазу.
4.  Ферменты ЦТК: цитратсинтазу.
Механизм действия адреналина и глюкагона
Усиливают распад гликогена в мышцах и печени, активируя фосфорилазу гликогена и переход глюкозы в кровь за счет активизации глюкозо-6-фосфотазы. Адреналин оказывает преимущественное действие на мышечные клетки, а глюкагон – на клетки печени.
Механизм действия глюкокортикоидов.
Усиливают глюкогенез за счет индукции синтеза в клетках печени ключевых ферментов глюкогенеза – фосфоенолпируват-карбоксилазы, пируваткарбоксилазы, фруктозо-1,6-дифосфотазы, глюкозо-6-фосфотазы.
Гормрнальная регуляция обмена глюкозы.
Механизм действия гормонов заключается в повышении (снижении) активности готовых форм ферментов или (глюкокортикоиды) + интенсификация их синтеза.
Гипергликемические гормоны:
Адреналин, глюкогон – активация фосфорилазы.
Кортикостероиды – активация (усиление синтеза) ферментов глюконеогенеза: пируваткарбоксилаза, ФЕП-карбоксилаза, фру-1,6-дифосфотаза, глю-6-фосфотаза.
 - утилизация глюкозы – ингибируют гексокиназу
 АКТГ  - усиление синтеза гормонов коры надпочечников
СТГ – опосредованное действие, активируя липазу жировых депо и способствуя повышению концентрации НЭЖК в крови (энергетический материал), сберегается глюкоза.
22 Патология углеводного обмена. Сахарный диабет.
Патология обмена углеводов.
Нарушения обмена глюкозы проявляются в виде гипергликемии, глюкозурии и гипогликемии. Особую форму представляют нарушениями энергетического обмена при гипоксических состояниях.
Гипергликемия характеризуется повышением уровня глюкозы свыше 6 ммоль/л. Различают физиологические и патологические гипергликемии. К физиологическим гипергликемиям относятся алиментарные, возникающие при одномоментном приеме больших количеств углеводов, и нейтрогенные, например, при стрессовых ситуациях в результате выброса в кровь больших количеств адреналина. Физиологические гипергликемии носят транзиторный характер и быстро проходят.
Патологические гипергликемии обусловлены нарушением оптимального соотношения между секрецией гормонов гипо- и гипергликемического действия. Наиболее распространенное причина патологической гипергликемии – сахарный диабет, связанный с недостатком секреции инсулина поджелудочной железой. Кроме сахарного диабета гипергликемия сопутствует также заболеваниям гипофиза, сопровождающимся повышенной секрецией соматотропного гормона и АКТГ (акромегалия, опухоли гипофиза), опухолями мозгового слоя надпочечников, при которых усилено образование катехоламинов и коркового слоя надпочечников с усиленной продукцией глюкокортикоидов, гиперфункции щитовидной железы, некоторым болезням печени (инфекционный гепатит, цирроз печени).
 Сахарный диабет – связан с недостаточностью инсулина, вырабатываемого  β- клетками поджелудочной железы. Развитию сахарного диабета способствует избыточное потребление углеводов и жиров, малоподвижный образ жизни, стрессовые ситуации.
В основе сахарного диабета лежат следующие молекулярные дефекты:
Нарушение превращения проинсулина в инсулин в результате мутаций, затрагивающих аминокислотные остатки в участке соединения А-цепи (или В-цепи) с С-пептидом в проинсулине. У таких больных в крови высокое содержание проинсулина, лишенного гормональной активности.
2 Нарушение молекулярной структуры инсулина. Замена фен на лей сопровождается снижением гормональной активности в 10 раз.
3. Дефект рецепторов инсулина. У ряда больных секретируется нормальный инсулин, но нарушено его связывание с клетками-мишенями в результате дефекта рецепторов инсулина в плазматических мембранах.
4. Нарушение сопряжения рецепторов инсулина. У ряда больных секретируется нормальный инсулин, клетки-мишени содержат обычное количество рецепторов, но отсутствует сопряжение между инсулин-рецепторным комплексом и следующим компонентом в цепи передачи гормонального сигнала.
Важнейшими биохимическими признаками сахарного диабета являются:
1.  Гипергликемия. В результате недостатка инсулина нарушается проникновение глюкозы в ткани и глюкоза накапливается в крови. В ответ на дефицит глюкозы в клетках печени усиливается распад гликогена и выход свободной глюкозы в кровь, что усугубляет гипергликемию. Возникает возможность развитие гипергликемической комы.
2. люкозурия и полиурия. Когда содержание глюкозы в крови превышает способность почечных канальцев к реабсорбции глюкозы она выделяется с мочой. Вместе с глюкозой выделяется много воды и больной испытывает голод и жажду.
3.     Кетонемия и кетоурия.  Вследствие дефицита глюкозы в тканях клетки начинают использовать в качестве энергии жиры. При β - окислении жирных кислот образуется Ацетил-КоА, который не сгорает с ЦТК полностью и из него синтезируются кетоновые тела: ацетоуксустная, β - оксимасляная кислоты и ацетон. Увеличение концентрации кетоновых тел в крови – кетонемия и выведение кетоновых тел с мочой – кетонурия.
4.Нарушение кислотно-щелочного равновесия с развитием кетоацидоза.
Кетоновые тела сдвигают рН крови и тканевой жидкости в кислую сторону.
Вначале буферные системы компенсируют сдвиг рН – компенсированный ацидоз. При тяжелых состояниях может возникнуть некомпенсированный ацидоз.
Алкоголь тормозит глюконеогенез.
Потребление больших количеств алкоголя резко тормозит глюконеогенез в печени, вследствие чего понижается содержание глю в крови, т.е. возникает гипогликемия. Это особенно сказывается после тяжелой физической нагрузки и на голодный желудок, уровень глю может понизиться до 40 и даже 30% от нормы. Гипергликемия не благоприятно сказывается на функции мозга. Она особенно опасна для тех областей мозга, которые контролируют температуру тела.
23 Переваривание и всасывание липидов в ЖКТ:  
Натуральные липиды пищи (триацилглицеролы) представляют собой по-преимуществу жиры или масла. Они частично могут всасываться в желудочно-кишечном тракте без предварительного гидролиза. Непременным условием такого всасывания является их предварительное эмульгирование. Триацилглицеролы могут всосаться лишь тогда, когда средний диаметр частичек жира в эмульсиине превышает 0,5 мкм. Основная часть жиров всасывается лишь в виде продуктов их ферментативного гидролиза: хорошорастворимых в воде жирных кислот, моноглицеридов и глицерола.      В процессе физической и химической обработки потребляемой пищи в полости рта, жиры не подвергаются гидролизу. Слюна не содержит эстераз (липаз) - ферментов расщепляющих липиды и их продукты. Переваривание жиров начинается в желудке. Сжелудочным соком секретируется липаза - фермент, расщепляющий жиры. Однако её действие на жиры в желудке малозначимо по ряду причин. Во-первых, из-за небольшого количества липазы, секретируемой с желудочным соком. Во-вторых, в желудке среда(кислотность/щёлочность) неблагоприятна для максимального действия липазы. Среда оптимальная для действия липазы должна иметь слабую кислотность или быть близкой к нейтральной, ~pH = 5,5 ÷ 7,5. Реально, среднее значение кислотности содержимого желудка значительно выше, ~ pH = 1,5. Жиры пищи, переработанной в полости рта и попавшей в желудок, представляют собой крупные частицы, перемешанные с образующимся химусом. Веществ-эмульгаторов в желудочном соке нет. В составе химуса может быть незначительное количество эмульгированных жиров пищи, попавших в желудок с молоком или мясными бульонами. Таким образом, у взрослых в желудке отсутствуют благоприятные условия для расщепления жиров. Некоторые особенности переваривания жиров существуют у детей грудного возраста.
В слизистой оболочке корня языка и примыкающей к нему области глотки у детей грудного возраста расположены экзокринные железы, секрет которых содержит липазу. Секреция этих желёз стимулируется при раздражении механорецепторов во время сосательных и глотательных движений при естественном кормлении грудью. Липаза полости рта получила определение лингвальной липазы. Поскольку грудное молоко быстро проглатывается ребенком, действие лингвальной липазы, перемешанной с молоком, начинает проявляться только в желудке. Железы полости рта снижают количество секретируемой лингвальной липазы и ее значимость в переваривании жиров уменьшается. У взрослых секреция лингвальной липазы незначительна.       Расщепление триацилглицеролов (жиров) в желудке взрослого человека невелико. Вместе с тем его результаты важны для расщепления жиров в тонкой кишке. В результате гидролиза жиров в желудке при участии липазы, образуются свободныежирные кислоты. Соли жирных кислот являются активным эмульгатором жиров. Химус желудка, в составе которого находятся жирные кислоты, транспортируется вдвенадцатиперстную кишку. При прохождении через двенадцатиперстную кишку химус перемешивается с жёлчью и с соком поджелудочной железы, содержащим липазу. В двенадцатиперстной кишке, кислотность химуса, обусловленная содержанием в немсоляной кислоты, нейтрализуется бикарбонатами сока поджелудочной железы и сока собственных желез (). При нейтрализации бикарбонаты разлагаются с образованием пузырьков углекислого газа. Это способствует перемешиванию химуса с пищеварительными соками. Образуется суспензия - разновидность раствора. Поверхность контакта ферментов с субстратом в суспензии увеличивается. Одновременно с нейтрализацией химуса и образованием суспензии происходит эмульгирование жиров. Небольшое количество свободных жирных кислот, образовавшихся в желудке под действием липазы, образуют соли жирных кислот. Они являются активным эмульгатором жиров. Кроме того, жёлчь, поступившая в двенадцатиперстную кишку и перемешанная с химусом, содержит натриевые солижёлчных кислот. Соли жёлчных кислот, как и соли жирных кислот, растворимы в воде и являются еще более активным детергентом, эмульгатором жиров
Желчные кислоты являются основным конечным продуктом метаболизма холестерина. В жёлчи человека больше всего содержатся: холевая кислота, дезоксихолевая кислота и хенодезоксихолевая кислота. В меньшем количестве в жёлчи человека содержатся: литохолевая кислота, а также аллохолевая и уреодезоксихолевая кислоты (стереоизомеры холевой и хенодезоксихолевой кислот). Жёлчные кислоты по большей части конъюгированы либо с глицином, либо с таурином. В первом случае они существуют в виде гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой кислот (~65 ÷ 80% всех жёлчных кислот). Во втором случае они существуют в виде таурохолевой, тауродезоксихолевой и таурохенодезоксихолевойкислот (~20 ÷ 35% всех жёлчных      Наиболее эффективное эмульгирование жиров происходит при комбинированном действии на капельки жира трех веществ: солей жёлчных кислот, ненасыщенных жирных кислот и моноацилглицеролов. При таком действии поверхностное натяжение частиц жира на разделе фаз жир/вода резко уменьшается. Крупные частицы жира распадаются на мельчайшие капельки. Мелкодисперсная эмульсия, содержащая указанную комбинацию эмульгаторов, очень стабильна, и укрупнения частичек жира не происходит. Совокупная поверхность капелек жира очень велика. Это обеспечивает большую вероятность взаимодействия жира с ферментом липазой и гидролиз жира.      Основная масса пищевых жиров (ацилглицеролов) расщепляется в тонкой кишке при участии липазы сока поджелудочной железы. Панкреатическая липаза является гликопротеидом, легче всего расщепляющим эмульгированные триацилгицеролы вщёлочной среде ~рН 8 ÷ 9. Как и все пищеварительные ферменты, панкреатическая липаза выводится в двенадцатиперстную кишку в виде неактивного профермента - пролипазы. Активация пролипазы в активную липазу происходит под действием жёлчных кислот и другого фермента сока поджелудочной железы - колипазы. При комбинации колипазы с пролипазой (в количественном соотношении 2:1) образуется активная липаза, участвующая в гидролизе эфирных связей триацилглицеролов. Продуктами расщепления триацилглицеролов являются диацилглицеролы, моноацилглицеролы, глицерин и жирные кислоты. Все эти продукты могут всасываться в тонкой кишке. В соке поджелудочной железы содержится фермент моноацилглицерол липаза (КФ = EC 3.1.1.23 acylglycerol lipase, monoacylglycerol lipase). Она модифицирует моноацилглицеролы, в результате чего образуются глицерол и жирные кислоты. 
24 Бета-окисление жирных кислот. Энергетический эффект бета-окисления и его связь с ЦТК (схема , локализация процесса, характеристика ферментов.):
β-Окисление - специфический путь катаболизма жирных кислот, при котором от карбоксильного конца жирной кислоты последовательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисления жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.
Активация жирных кислот Перед тем, как вступить в различные реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической связью с коферментом А:RCOOH + HSKoA + АТФ → RCO ~ КоА + АМФ + PPi.Реакцию катализирует фермент ацил-КоА син-тетаза. Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О → 2 Н3РО4.Выделение энергии при гидролизе макроэргической связи пирофосфата смещает равновесие реакции вправо и обеспечивает полноту протекания реакции активации.Ацил-КоА синтетазы находятся как в цитозоле, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий. Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА синтетазами, расположенными на внешней мембране митохондрий.
Транспорт жирных кислот с длинной углеводородной цепью в митохондриях:
β-Окисление жирных кислот, происходит в матриксе митохондрий, поэтому после активации жирные кислоты должны транспортироваться внутрь митохондрий. Жирные кислоты с длинной углеводородной цепью переносятся через плотную внутреннюю мембрану митохондрий с помощью карнитина. Карнитин поступает с пищей или синтезируется из незаменимых аминокислот лизина и метионина. В реакциях синтеза карнитина участвует витамин С (аскорбиновая кислота).
В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I), катализирующий реакцию с образованием ацилкарнитина.
Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранс-локазы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнитинацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА (рис. 8-26). Таким образом, ацил-КоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой На внутренней поверхности внутренней мембраны находится фермент карнитинацил трансфераза II, катализирующий обратный перенос ацила с карнитина на внутримитохондриальный КоА. После этого ацил-КоА включается в реакции β-окисления.
β-Окисление жирных кислот - специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА. Водород из реакций β-окисления поступает в ЦПЭ, а ацетил-КоА окисляется в цитратном цикле, также поставляющем водород для ЦПЭ. Поэтому β-окисление жирных кислот - важнейший метаболический путь, обеспечивающий синтез АТФ в дыхательной цепи.
β-Окисление начинается с дегидрирования ацил-КоА FAD-зависимой ацил-КоА дегидрогеназой с образованием двойной связи между α- и β-атомами углерода в продукте реакции - еноил-КоА. Восстановленный в этой реакции кофермент FADH2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы АТФ (рис. 8-27). В следующей реакции р-окисления по месту двойной связи присоединяется молекула воды таким образом, что ОН-группа находится у β-углеродного атома ацила, образуя β-гидроксиацил-КоА. Затем β-гидроксиацил-КоА окисляется NАD+-зависимой дегидрогеназой. Восстановленный NADH, окисляясь в ЦПЭ, обеспечивает энергией синтез 3 молекул АТФ. Образовавшийся β-кетоацил-КоА подвергается тиолитическому расщеплению ферментом тиолазой, так как по месту разрыва связи С-С через атом серы присоединяется молекула кофермента А. В результате этой последовательности из 4 реакций от ацил-КоА отделяется двухуглеродный остаток - ацетил-КоА. Жирная кислота, укороченная на 2 атома углерода, опять проходит реакции дегидрирования, гидратации, дегидрирования, отщепления ацетил-КоА. Эту последовательность реакций обычно называют "циклом β-окисления", имея в виду, что одни и те же реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остаткиР Продуктами каждого цикла β-окисления являются FADH2, NADH и ацетил-КоА. Хотя реакции в каждом "цикле" одни и те же, остаток кислоты, который входит в каждый последующий цикл, короче на 2 углеродных атома. В последнем цикле окисляется жирная кислота из 4 атомов углерода, поэтому образуются 2 молекулы ацетил-КоА, а не 1, как в предыдущих. Суммарное уравнение β-окисления, например пальмитоил-КоА может быть представлено таким образом:
С15Н31СО-КоА + 7 FAD + 7 NAD+ + 7 HSKoA → 8 СН3-СО-КоА + 7 FADH2 + 7 (NADH + H+).
Если рассчитывать выход АТФ при окислении пальмитиновой кислоты (табл. 8-7), то из общей суммы молекул АТФ необходимо вычесть 2 молекулы, так как на активацию жирной кислоты тратится энергия 2 макроэргических связей (см. реакцию активации жирной кислоты).
Во многих тканях окисление жирных кислот - важный источник энергии. Это ткани с высокой активностью ферментов ЦТК и дыхательной цепи - клетки красных скелетных мышц, сердечная мышца, почки. Эритроциты, в которых отсутствуют митохондрии, не могут Синтез АТФ при полном окислении пальмитиновой кислоты
β-Окисление Количествомолекул АТФ
7 NADH (от пальмитоил-КоА до ацетил-КоА), окисление каждой молекулы кофермента в ЦПЭ обеспечивает синтез 3 молекул АТФ 21
7 FADHa, окисление каждой молекулы кофермента в ЦПЭ обеспечивает синтез 2 молекул АТФ 14
Окисление каждой из 8 молекул ацетил-КоА в ЦТК обеспечивает синтез 12 молекул АТФ 96
Суммарное количество молекул АТФ, синтезированных при окислении одной молекулы пальмитоил-КоА 131
окислять жирные кислоты. Жирные кислоты не служат источником энергии для мозга и других нервных тканей, так как жирные кислоты не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества. В экспериментах показано, что скорость обмена жирных кислот в нервной ткани существенно меньше, чем в других тканях.
25 Биосинтез жирных кислот и нейтральных жиров в организме (схема , локализация процесса, характеристика ферментов).
Синтез липидов происходит в гладкой эндоплазматической сети. Сначала происходит присоединение двух ацильных остатков к молекуле глицерофосфата, в результате этого процесса образуется фосфатидная кислота, которая является общим предшественником и нейтральных жиров, и фосфолипидовДалее, в ходе образования нейтральных жиров происходит отщепление фосфата от молекулы фосфатидной кислоты, образовавшийся при этом диацилглицерин еще раз ацилируется опять же с участием ацил-КоА и образуется нейтральный липид (триглицерид). Активный синтез нейтральных липидов происходит в печени, слизистой оболочке кишечника, жировой ткани. Фосфатидная кислота служит предшественником при синтезе фосфолипидов. При этом происходит присоединение соответствующего радикала к остатку фосфорной кислоты в составе фосфатидной кислоты. Этот процесс может включать несколько промежуточных стадий, которые зависят, в первую очередь, от природы присоединяемого радикала - Синтез жирных кислот локализован на мембранах гладкого эндоплазматического ретикулума. Исходным продуктом этого синтеза является малонил-КоА, который образуется при карбоксилировании ацетил-КоА (рис. 20). Эта реакция называется гетеротрофной фиксацией СО2. Начальным этапом синтез жирных кислот является конденсация малонил-КоА с ацетил-КоА, в результате которой образуется кетобутирил-КоА. Кетобутирил-КоА восстанавливается до оксибутирил-КоА, который далее дегидратируется с образованием кротонил-КоА. Кротонил-КоА восстанавливается до бутирил-КоА. А далее происходит конденсация образовавшегося бутирил-КоА со следующим ацетил-КоА.
Таким образом, синтез жирных кислот носит циклический характер и представляет собой последовательность присоединений двухуглеродного остатка к растущей цепи с последующим восстановлением продукта конденсации. После того, как ацильный радикал достигает нужного размера, он отщепляется от Кофермента А с помощью специального фермента.
26 Кетоновые тела: биологическая роль, классификация, схема синтеза. Диагностическое значение определения кетоновых тел в моче. Кетоацидоз.
Кетоновые тела – это общее понятие для трех продуктов обмена веществ, которые образуются в печени: ацетон, ацетоуксусная и бетаоксимасляная кислота.В норме кетоновые тела в общем анализе мочи отсутствуют. Хотя на самом деле за сутки с мочой выделяется незначительное количество кетоновых тел. Такие концентрации не могут быть определены обычными методами, используемыми в лабораториях, поэтому принято считать, что в норме в моче кетоновых тел нет.Кетоновые тела обнаруживаются в общем анализе мочи при нарушении обмена углеводов и жиров, которое сопровождается увеличением количества кетоновых тел в тканях в крови (кетонемия).Содержание в моче кетоновых тел называется кетонурией.В нормальных условиях организм черпает энергию в основном из глюкозы. Глюкоза накапливается в организме, в первую очередь в печени, в виде особого вещества – гликогена. Гликоген образовывает энергетический резерв, который может быть быстро мобилизован при необходимости компенсировать внезапный недостаток глюкозы. При дефиците глюкозы в организме гликоген под воздействием ферментов расщепляется до глюкозы, которая поступает в кровь.При физических и эмоциональных нагрузках, при болезнях с повышенной температурой и других повышенных затратах энергии запасы гликогена исчерпываются, организм начинает получать энергию из запасов жира. При распаде жира образуются кетоновые тела, которые выводятся с мочой.По сравнению со взрослыми, у детей запасы гликогена намного меньше, использование жиров начинается раньше, и как результат, при анализе мочи обнаруживается кетонурия. У новорожденных повышение кетоновых тел в моче почти всегда вызывается недокормленностью.Если с кетоновими телами в общем анализе мочи обнаруживается глюкоза, то это верный признак сахарного диабета.Также кетоновые тела в общем анализе мочи появляются в следствие обезвоживании организма. Они обнаруживаются в моче при резком похудении, лихорадочных состояниях, голодании, тяжелых отравлениях с сильной рвотой и поносом.
Синтез кетоновых тел
Во время высокого уровня окисления жирных кислот образуется большое количество ацетилКоА. Если в цикле Кребса его достаточно, то он идёт на синтез кетоновых тел, кетогенез. Кетоновые тела: -ацетоацетат -бетта-гидроксибутират (восстановленная форма ацетоацетата) -ацетон. -------------Формирование ацетоацетилКоА осуществляется путём конденсации двух молекул ацетилКоА в реакции, обратной тиолазной. АцетоацетилКоА и ещё один моль ецтилКоА превращаются в бетта-гидрокси-бетта-метилглутарилКоА (ГОМГ-КоА) с помощью фермента ГОМГ-КоАсинтетазы. Этот фермент находится в большом количестве в печени. Небольшое количество ГОМГ-КоА покидает митохондрию и затем с помощью ГОМГ-КоА редуктазы превращается в мевалонат, который является предшественником в синтезе холестерола). В митохондрии под действием ГОМГ-КоА лиазы ГОМГ-КоА превращается в ацетоацетат. Ацетоацетат может спонтанно декарбоксилироваться до ацетона или превращаться в бетта-гидроксибутират под действием бетта-гидроксибутиратДГ. Когда уровень гликогена в печени высок, то продукция бетта-гидроксибутирата возрастает.
Когда использование углеводов низкое или недостаточное, то падает уровень ЩУК. Это в свою очередь ведёт к возрастанию освобождения кетоновых тел из печени для исползования их как топливо другими тканями. В ранних стадиях голдания, когда последние остатки жиров окислились, сердце и мышцы главным образом будут потреблять кетоновые тела для того, чтобы сохранить драгоценную глюкозу, которая необходима мозгу.
Кетоновые тела используются внепечёночными тканями посредством превращения бетта-гидроксибутирата в ацетоацетат, а ацетоацетат в ацетоацетилКоА. Первый шаг - это реакция, обратная бетта-гидроксибутиратДГ-азной реакции. Второй - посредством активности ацетоацетат-сукцинилКоА трансферазы, которая также называется кетоацилКоА трансфераза.
ацетоацетат + сукцинилКоА = ацетоацетилКоА + сукцинат
Этот фермент присутствует во всех тканях, кроме печени, что позволяет печени продуцировать кетоновые тела, не используя их.
Кетоацидоз, так же, как и гипогликемия, относится к острым (развивающимся очень быстро) осложнениям диабета. Когда организму не хватает энергии, он начинает ее получать, расщепляя жиры. При расщеплении жиров в организме вырабатываются специальные вещества, называемые кетонами. Кетоны в свою очередь повышают кислотность крови, отсюда и получилось название кетоацидоз.
27 Холестерин: строение, функции.
Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу. 
Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин - компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников , плазма и атероматозные бляшки , где преобладают эфиры холестерина . Кроме того, значительная часть холестерина в кишечной лимфе и в печени тоже этерифицирована. Холестерин содержится в составе липопротеинов либо в свободной форме, либо в виде эфиров с длинноцепочечными жирными кислотами . Он синтезируется во многих тканях из ацетил-CoA и выводится из организма желчью в виде свободного холестерола или солей желчных кислот. Холестерол является предшественником других стероидов, а именно кортикостероидов, половых гормонов , желчных кислот и витамина D. Он является соединением, типичным для метаболизма животных, и содержится значительных количествах в продуктах животного происхождения: яичном желтке, мясе, печени и мозге. Свободный холестерол удаляется из тканей при участии ЛПВП и транспортируется в печень, где превращается в желчные кислоты. Он является основным компонентом желчных камней, однако его главная роль в патологии состоит в том, что он служит фактором, вызывающим атеросклероз жизненно важных артерий головного мозга, сердечной мышцы и других органов. При коронарном атеросклерозе наблюдается высокая величина соотношения холестерол ЛПНП/холестерол ЛПВП в плазме.  Плазматические мембраны эукариот содержат довольно большое количество холестерола - приблизительно одну молекулу на каждую молекулу фосфолипида. Помимо регулирования текучести холестерол увеличивает механическую прочность бислоя
Холестерин присутствует только в животных организмах, в растениях его нет. В организме человека холестерин содержится в печени, спинном и головном мозге, надпочечниках, половых железах, жировой ткани; входит в состав оболочек почти всех клеток. Много холестерина содержится в материнском молоке. Общее количество этого вещества в нашем организме составляет примерно 350 г, из которых 90% находится в тканях и 10% — в крови (в виде сложных эфиров с жирными кислотами). Из холестерина состоит свыше 8% плотного вещества мозга.
Большая часть холестерина вырабатывается самим организмом (эндогенный холестерин), гораздо меньшая поступает с пищей (экзогенный холестерин). Примерно 80% этого вещества синтезируется в печени, остальной холестерин вырабатывается в стенке тонкой кишки и некоторых других органах.
Без холестерина невозможна нормальная работа жизненно важных органов и систем нашего организма. Он входит в составклеточных мембран, обеспечивая их прочность и регулируя их проницаемость, а также оказывая влияние на активность мембранных ферментов.
Термин «мембрана» обозначает клеточную границу, служащую, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить молекулы воды и некоторые из растворенных в ней веществ. Более чем на 95% мембраны состоят из липопротеидов. В их состав входят фосфо-, гликолипиды и холестерин, который выполняет не только стабилизирующую, но и протекторную функцию. Он обеспечивает стабильность клеточных мембран и защищает внутриклеточные структуры от разрушительного действия свободных кислородных радикалов, которые образуются при обмене веществ и под влиянием внешних факторов. Следующая функция холестерина заключается в его участии в метаболических процессах, производстве желчных кислот, необходимых для эмульгации и абсорбции жиров в тонком кишечнике, и различных стероидных гормонов, в том числе половых. При непосредственном участии холестерина происходит выработка в организме витамина D (который играет ключевую роль в обмене кальция и фосфора), гормонов надпочечников (кортизола, кортизона, альдостерона), женских половых гормонов (эстрогенов и прогестерона), мужского полового гормона тестостерона. Поэтому бесхолестериновые диеты вредны еще и тем, что длительное их соблюдение часто приводит к возникновениюполовых дисфункций (как у мужчин, так и у женщин).
28 Гормональная регуляция липидного обмена. Взаимосвязь обмена углеводов и липидов в норме и при патологии.

Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая – нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием кате-холаминов. Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лаг-фазы продолжительностью около 1 ч, тогда как адреналин стимулирует липолиз почти мгновенно. Иными словами, можно считать, что первичное действие этих двух типов гормонов на липолиз проявляется различными путями. Адреналин стимулирует активность аденилатциклазы, а СТГ индуцирует синтез данного фермента. Конкретный механизм, с помощью которого СТГ избирательно увеличивает синтез аденилатциклазы, пока неизвестен. Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. Недавно было показано, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани. Фосфодиэстераза играет важную роль в поддержании постоянного уровня цАМФ в тканях, поэтому увеличение содержания инсулина должно повышать активность фосфодиэстеразы, что в свою очередь приводит к уменьшению концентрации цАМФ в клетке, а следовательно, и к образованию активной формы липазы. Несомненно, и другие гормоны, в частности тироксин, половые гормоны, также оказывают влияние на липидный обмен. Например, известно, что удаление половых желез (кастрация) вызывает у животных избыточное отложение жира. Однако сведения, которыми мы располагаем, не дают пока основания с уверенностью говорить о конкретном механизме их действия на обмен липидов. В табл. 11.2 приведены сводные данные о влиянии ряда факторов на мобилизацию жирных кислот из жировых депо.
29 Азотистый баланс организма и его регуляция. Суточная потребность в белках. Биологическая ценность белков.
Азотистый баланс
Аминокислоты (свободные и в составе белков) содержат почти 95% всего азота, поэтому именно они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота (преимущественно в виде мочевины и аммонийных солей). Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Такое состояние бывает у здорового человека при нормальном питании. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей, а также у пациентов, выздоравливающих после тяжёлых болезней. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний.При безбелковой диете азотистый баланс становится отрицательным. Соблюдение подобной диеты в течение недели приводит к тому, что количество выделяемого азота перестаёт увеличиваться и стабилизируется примерно на величине 4 г/сут. Такое количество азота содержится в 25 г белка. Значит, при белковом голодании в сутки в организме расходуется около 25 г собственных белков тканей. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.
Нормы белка в питании Для поддержания азотистого равновесия достаточно употреблять 30-50 г белков в сутки. Однако такое количество не обеспечивает сохранения работоспособности и здоровья человека. Принятые нормы белкового питания для взрослых и детей учитывают климатические условия, профессию, условия труда и другие факторы. Взрослый человек при средней физической нагрузке должен получать 100-120 г белков в сутки. При тяжёлой физической работе эта норма увеличивается до 130-150 г. Детям до 12 лет достаточно 50-70 г белков в сутки. При этом подразумевается, что в пишу входят разнообразные белки животного и растительного происхождения.
Питательная ценность белка зависит от его аминокислотного состава и способности усваиваться организмом. Белки значительно различаются по аминокислотному составу. Некоторые их них содержат полный набор незаменимых аминокислот в оптимальных соотношениях, другие не содержат одной или нескольких незаменимых аминокислот. Растительные белки, особенно пшеницы и других злаковых, полностью не перевариваются, так как защищены оболочкой, состоящей из целлюлозы и других полисахаридов, которые не гидролизуются пищеварительными ферментами. Некоторые белки по аминокислотному составу близки к белкам тела человека, но не используются в качестве пищевых, так как имеют фибриллярное строение, малорастворимы и не расщепляются протеазами ЖКТ. К ним относят белки волос, шерсти, перьев и другие. Если белок содержит все незаменимые аминокислоты в необходимых пропорциях и легко подвергается действию протеаз, то биологическая ценность такого белка условно принимается за 100, и он считается полноценным. К таким относят белки яиц и молока. Белки мяса говядины имеют биологическую ценность 98. Растительные белки по биологической ценности уступают животным, так как труднее перевариваются и бедны лизином, метионином и триптофаном. Однако при определённой комбинации растительных белков организм можно обеспечить полной и сбалансированной смесью аминокислот. Так, белки кукурузы (биологическая ценность - 36) содержат мало лизина, но достаточное количество триптофана. А белки бобов богаты лизином, но содержат мало триптофана. Каждый из этих белков в отдельности является неполноценным. Однако смесь бобов и кукурузы содержит необходимое человеку количество незаменимых аминокислот.
30 Переваривание белков в желудочно-кишечном тракте.
А. Переваривание белков в желудке
Желудочный сок - продукт нескольких типов клеток. Обкладочные (париетальные) клетки стенок желудка образуют соляную кислоту, главные клетки секретируют пепсиноген. Добавочные и другие клетки эпителия желудка выделяют муцинсодержащую слизь. Париетальные клетки секретируют в полость желудка также гликопротеин, который называют "внутренним фактором" (фактором Касла). Этот белок связывает "внешний фактор" - витамин В12, предотвращает его разрушение и способствует всасыванию.
Образование и роль соляной кислоты
Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов -гастринов (см. раздел 11), которые, в свою очередь, вызывают секрецию НСI и профермента - пепсиногена. НСI образуется в обкладочных клетках желудочных желёз в ходе реакций, представленных на рис. 9-2.
Источником Н+ является Н2СО3, которая образуется в обкладочных клетках желудка из СО2, диффундирующего из крови, и Н2О под действием фермента карбоангидразы (карбонатдегидра-тазы):
Н2О + СО2 → Н2СО3 → НСО3- + H+
Диссоциация Н2СО3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму в обмен на С1-, и ионов Н+, которые поступают в просвет желудка путём активного транспорта, катализируемого мембранной Н+/К+-АТФ-азой. При этом концентрация протонов в просвете желудка увеличивается в 106 раз. Ионы С1- поступают в просвет желудка через хлоридный канал.
Концентрация НСl в желудочном соке может достигать 0,16 М, за счёт чего значение рН снижается до 1,0-2,0. Приём белковой пищи часто сопровождается выделением щелочной мочи за счёт секреции большого количества бикарбоната в процессе образования НСl. Под действием НСl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум рН для действия пепсина.
2.Механизм активации пепсина
Под действием гастринов в главных клетках желудочных желёз стимулируются синтез и секреция пепсиногена - неактивной формы пепсина. Пепсиноген - белок, состоящий из одной полипептидной цепи с молекулярной массой 40 кД. Под действием НСl он превращается в активный пепсин (молекулярная масса 32,7 кД) с оптимумом рН 1,0-2,5. В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются 42 аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. Образовавшиеся под действием НСl активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) и несколько медленнее - образованные лейцином и дикарбоновыми аминокислотами. Пепсин - эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.
3.Возрастные особенности переваривания белков в желудке
У детей грудного возраста в желудке находится фермент реннин (химозин) , вызывающий свёртывание молока. Основной белок молока - казеин, представляющий смесь нескольких белков, различающихся по аминокислотному составу и электрофоретической подвижности. Реннин катализирует отщепление от казеина гликопептида, в результате чего образуется параказеин. Параказеин присоединяет ионы Са2+, образуя нерастворимый сгусток, чем предотвращает быстрый выход молока из желудка. Белки успевают расщепиться под действием пепсина. В желудке взрослых людей реннина нет, молоко у них створаживается под действием НСl и пепсина.
В слизистой оболочке желудка человека найдена ещё одна протеаза - гастриксин. Все 3 фермента (пепсин, реннин и гастриксин) сходны по первичной структуре, что указывает на их происхождение от общего гена-предшественника.
Нарушения переваривания белков в желудке
При различных заболеваниях ЖКТ в желудке нарушается выделение НСl и пепсиногена, при этом переваривание белков заметно снижается. Наиболее часто встречаются патологические изменения кислотности желудочного сока. Нарушение образования пепсина отмечают реже и выявляют при более значительных поражениях желудка.
Определение кислотности желудочного сока используют для диагностики различных заболеваний желудка (табл. 9-2). Повышенная кислотность желудочного сока обычно сопровождается изжогой, диареей и может быть симптомом язвы желудка и двенадцатиперстной кишки, а также гиперацидного гастрита. Пониженная кислотность бывает при некоторых видах гастритов. Полное отсутствие НСl и пепсина (желудочная ахилия) наблюдается при атрофических гастритах и часто сопровождается пернициозной анемией вследствие недостаточности выработки фактора Касла и нарушения всасывания-витамина В12 (см. раздел 3). Анацидность (рН желудочного сока >6,0) свидетельствует о значительной потере слизистой оболочкой желудка обкладочных клеток, секретирующих соляную кислоту, что часто вызывает рак желудка.
Кислотность желудочного сока выражается в титрационных единицах (ТЕ) - количество 0,1 М NaOH в 1 мл, затраченное на титрование 100 мл желудочного сока по определённому индикатору. При определении кислотности желудочного сока различают: общую кислотность, связанную НСl и свободную НСl.
Общая кислотность желудочного сока - совокупность всех кислотореагирующих веществ желудочного сока, представляет собой секрет желудка, собираемый в течение 1 ч. Значения общей кислотности в норме составляют 40-60 ТЕ.
Связанная соляная кислота - НСl, связанная с белками и продуктами их переваривания. Значения связанной НСl у здоровых людей - 20-30 ТЕ.
Свободная НСl - соляная кислота, не связанная с компонентами желудочного сока. Значения свободной НСl в норме - 20-40 ТЕ. рН желудочного сока в норме - 1,5-2,0.
Молочная кислота в норме в желудочном соке отсутствует. Она образуется при уменьшении содержания или отсутствии свободной соляной кислоты в результате размножения молочнокислых бактерий или при злокачественных опухолях желудка, в клетках которых глюкоза окисляется анаэробным путём. При диагностике заболеваний желудка, кроме биохимических анализов, обязательно проводят рентгенологические и эндоскопические исследования, а также биопсию.
31 Общие пути обмена аминокислот. Дезаминирование, трансаминирование, декарбоксилирование. Биогенные амины.
Общие пути превращения аминокислот включают реакции дезаминирования, трансаминирования, декарбоксилирования, биосинтеза и рацемизации. Реакции рацемизации характерны только для микроорганизмов, физиологическая роль которой заключается в синтезе D-изомеров аминокислот для построения клеточной оболочки.
Дезаминирование ( отщепление аминогруппы) – существует четыре типа реакций, катализируемых своими ферментами:
Восстановительное дезаминорование ( +2H+)
Гидролитическое дезаминированиие (+H2О)
Внутримолекулярное дезаминирование
Окислительное дезаминирование (+1/2 О2)
Во всех случаях NH2- группа аминокислоты высвобождается в виде аммиака. Помимо аммиака продуктами дезаминирования являются жирные кислоты, окикислоты и кетокислоты.
Кроме перечисленных четырех типов реакций и катализирующих их ферментов в животных тканях и печени человека открыты также три специфических фермента (серин- и треониндегидратазы и цистатионин-γ- лиаза), катализирующих неокислительное дезаминирование серина, треонина и цистеина. Они требуют присутствия пиридоксаль-фосфата в качестве кофермента. Конечными продуктами реакции являются пируват и α- кетобутират, аммиак и сероводород.
Трансаминирование – реакции межмолекулярного переноса аминогруппы (NH2) от аминокислоты на α-кетокислоту без промежуточного образования аммиака (глутамат+ пируват = α-кетоглутарат + аланин). Реакции трансаминирования являются обратимыми и универсальными для всех живых организмов, они протекают при участии специфических ферментов – аминотрансфераз (трансамниназ). Теоретически реакции возможны между любой амино- и кетокислотой, но наиболее интенсивно они протекают, если один из партнеров представлен дикарбоновой амино- или кетокислотой. В переносе амниогруппы активное участие принимает кофермет трансминаз – пиридоксальфосфат (производное витамина В6). Для реакций трансаминирования характерен общий механизм. Ферменты реакции катализируют перенос аминогруппы не на α -кетокислоту, а на кофермент; образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям, приводящим к освобождению α-кетокислоты и пиридоксамнофосфата. Последний на втолрой стадии реагирует с любой другой α-кетокислотой, что через те же стадии приводит к синтезу новой аминокислоты и пиридоксальфосфата.
Декарбоксилирование - отщепление карбоксильной группы в виде СО2, образующиеся продукты реакции называются биогенными аминами, они оказывают сильное фармакологическое действие на множество функций. Эти реакции являются необратимыми, они катализируютя специфическими ферментами – декарбоксилазами аминокмлот- которые в качестве кофермента содержат пиридоксальфосфат ( кроме гистидиндекарбоксилазы и аденозилдекарбоксилазы – содержат остаток пировиноградной кислоты в качестве кофермента). В живых организмах открыты четыре типа декарбоксилирования аминокислот.
α-декарбоксилирование – характерно для тканей животных: от аминокислот отщепляется соседняя от α-углеродного атома карбоксильная группа.
ω-декарбоксилирование- свойственно микроорганизмам декарбоксилирование, связанное с реакцией трансаминирования. Образуется альдегид и новая аминокислота, соответствующая исходной кетокислоте
Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами. Простетическая группа декарбоксилаз в клетках животных - пиридоксальфосфат. Некоторые декарбоксилазы микроорганизмов могут содержать вместо ПФ остаток пирувата - гистидиндекарбоксилаза Micrococcus и Lactobacilus, SAM-декарбоксилаза Е. coli и др. Механизм реакции напоминает реакцию трансаминирования с участием пиридоксальфосфата и также осуществляется путём формирования шиффова основания ПФ и аминокислоты на первой стадии.
Синтез и биологическая роль серотонина
Серотонин - нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС из аминокислоты 5-гидрокситриптофана в результате действия декарбоксилазы ароматических аминокислот. Этот фермент обладает широкой специфичностью и способен также декарбоксилировать триптофан и ДОФА, образующийся из тирозина. 5-Гидрокситриптофан синтезируется из триптофана под действием фенилаланингидроксилазы с коферментом Н4БП (этот фермент обладает специфичностью к ароматическим аминокислотам и гидроксидирует также фенилаланин) (см. схему ниже). Серотонин может превращаться в гормон мелатонин, регулирующий суточные и сезонные изменения метаболизма организма и участвующий в регуляции репродуктивной функции.
Серотонин - биологически активное вещество широкого спектра действия. Он стимулирует сокращение гладкой мускулатуры, оказывает сосудосуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием. По некоторым данным он может принимать участие в аллергических реакциях, поскольку в небольших количествах синтезируется в тучных клетках.
Синтез и биологическая роль ацетилхолина Ацетилхолин синтезируется в нервной ткани и служит одним из важнейших возбуждающих нейромедиаторов вегетативной нервной системы. Его предшественник - аминокислота серии:
Синтез и биологическая роль γ-аминомасляной кислоты
В нервных клетках декарбоксилирование глутамата (отщепление α-карбоксильной группы) приводит к образованию γ-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга (см. схему на с. 514).
Цикл превращений ГАМК в мозге включает три сопряжённые реакции, получившие название ГАМК-шунта. Первую катализирует глутаматдекарбоксилаза, которая является пиридоксальзависимым ферментом. Эта реакция является регуляторной и обусловливает скорость образования ГАМК в клетках мозга. Продукт реакции - ГАМК. Последующие 2 реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза, также пиридоксальзависимая, образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат используется в цитратном цикле. Инактивация ГАМК возможна и окислительным путём под действием МАО.
Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса; повышает дыхательную активность нервной ткани; улучшает кровоснабжение головного мозга.
ГАМК в виде препаратов гаммалон или аминалон применяют при сосудистых заболеваниях головного мозга (атеросклероз, гипертония), нарушениях мозгового кровообращения, умственной отсталости, эндогенных депрессиях и травмах головного мозга, а также заболеваниях ЦНС, связанных с резким возбуждением коры мозга (например, эпилепсии).
Аминокислота гистидин в разных тканях подвергается действию различных ферментов и включается в два разных метаболических пути: катаболизм до конечных продуктов; синтез гистамина. В печени и коже гистидин подвергается дезаминированию под действием фермента гистидазы с образованием уроканиновой кислоты. Конечным продуктом катаболизма гистидина служит глутамат, NH3 и производные Н4-фолата (N5-формимино-Н4-фолат и N5-формил-Н4-фолат). Наследственный дефект гистидазы вызывает накопление гистидина и развитие гастидинемии, которая проявляется задержкой в умственном и физическом развитии детей. Наследственный дефект уро-каниназы в печени может вызвать уроканинемию, при которой в крови повышается уровень уроканата. Симптомы этого патологического состояния во многом аналогичны симптомам других энзимопатий и проявляются отставанием умственного и физического развития.
Ферменты гистидаза и уроканиназа гепатоспецифичны, поэтому их определение используют в клинике для диагностики поражений печени.
1. Синтез и биологическая роль гистамина
Гистамин образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани.
Гистамин образует комплекс с белками и сохраняется в секреторных гранулах тучных клеток. Секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ), развитии иммунных и аллергических реакций.
Гистамин выполняет в организме человека следующие функции: стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона);
повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль); сокращает гладкую мускулатуру лёгких, вызывает удушье; расширение сосудов, покраснение кожи, отёчность ткани; вызывает аллергическую реакцию; выполняет роль нейромедиатора; является медиатором боли.
К биогенным аминам относят и катехолами-ны (дофамин, норадреналин и адреналин).Дофамин, в частности, является медиатором среднего отдела мозга. Норадреналин - возбуждающий медиатор в гипоталамусе, а также медиатор синаптической нервной системы и разных отделов головного мозга. Адреналин - гормон, активно синтезирующийся при стрессе и регулирующий основной обмен, а также усиливающий сокращение сердечной мышцы.
32 Специфический обмен аминокислот. Гликогенные и кетогенные аминокислоты. Обмен фенилаланина и тирозина. Нарушения обмена аминокислот.
Гликогенные и кетонные аминокислоты
Катаболизм всех аминокислот сводится к образованию шести веществ, вступающих в общий путь катаболизма: пируват, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, фумарат, оксалоацетат
Аминокислоты, которые превращаются в пируват и промежуточные продукты ЦТК (α-КГ, сукцинил-КоА, фумарат) и образуют в конечном итоге оксалоацетат, могут использоваться впроцессе глюконеогенеза. Такие аминокислоты относят к группе гликогенных аминокислот.
Некоторые аминокислоты в процессе катаболизма превращаются в ацетоацетат (Лиз, Лей) или ацетил-КоА (Лей) и могут использоваться в синтезе кетоновых тел. Такие аминокислоты называют кетогенными.
Ряд аминокислот используется и для синтеза глюкозы, и для синтеза кетоновых тел, так как в процессе их катаболизма образуются 2 продукта - определённый метаболит цитратного цикла и ацетоацетат (Три, Фен, Тир) или ацетил-КоА (Иле). Такие аминокислоты называют смешанными, или гликокетогенными 
Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин - условно заменимая аминокислота, поскольку образуется из фенилаланина. Содержание этих аминокислот в пищевых белках (в том числе и растительных) достаточно велико. Фенилаланин и тирозин используются для синтеза многих биологически активных соединений. В разных тканях метаболизм этих аминокислот происходит поразному.
1. Метаболизм феиилаланина Основное количество фенилаланина расходуется по 2 путям: включается в белки; превращается в тирозин.
Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает.
Основной путь метаболизма фенилаланина начинается с его гидроксилирования (рис. 9-29), в результате чего образуется тирозин. Эта реакция катализируется специфической монооксиге-назой - фенилаланингидр(жсилазой, кофермен-том которой служит тетрагидробиоптерин (Н4БП). Активность фермента зависит также от наличия Fe2+. Реакция необратима. Н4БП в результате реакции окисляется в дигидробиоптерин (Н2БП). Регенерация последнего происходит при участии дигидроптеридинредуктазы с использованием NADPH + H+.
2. Особенности обмена тирозина в разных тканях:
Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О.
Катаболизм тирозина в печени
В печени происходит катаболизм тирозина до конечных продуктов. Специфический путь катаболизма включает несколько ферментативных реакций, завершающихся образованием фумарата и ацетоацетата:
Трансаминирование тирозина с ос-кетоглутаратом катализирует тирозинаминотрансфе-раза(кофермент ПФ) - индуцируемый фермент печени млекопитающих. В результате образуется п-гидроксифенилпируват.
В реакции окисления п-гидроксифенилпирувата в гомогентизиновую кислоту происходит декарбоксилирование, гидроксилирование ароматического кольца и миграция боковой цепи. Реакцию катализирует фермент п-гидроксифенилпируватдиоксигеназа, кофакторами которого выступают витамин С и Fe2+.
Превращение гомогентизиновой кислоты в фумарилацетоацетат сопровождается расщеплением ароматического кольца. Эта реакция катализируется диоксигеназой гомогентизиновой кислоты, в качестве кофермента содержащей Fe2+.
Обмен фенилаланина и тирозина связан со значительным количеством реакций гидроксилирования, которые катализируют оксигеназы. Ферменты оксигеназы (гидроксилазы) используют молекулу О2 и кофермент-донор водорода (чаще - Н4БП). Для катализа оксигеназам необходимы кофакторы - Fe2+ или гем (для некоторых - Сu+), а для многих ещё и витамин С. Оксигеназы делят на 2 группы:
Монооксигеназы - один атом О2 присоединяют к продукту реакции, другой используют для образования Н2О;
Диоксигеназы - оба атома О2 используют для образования продукта реакции.
Почти все процессы расщепления ароматических колец в биологических системах катализируются диоксигеназами, подклассом ферментов, открытым японским биохимиком Осами Хайяши.
В результате разрыва бензольного кольца образуется малеилацетоацетат, который в процессе цис- и транс-изомеризации превращается в фумарилацетоацетат.
Гидролиз фумарилацетоацетата при действии фумарилацетоацетатгидролазы приводит к образованию фумарата и ацетоацетата. Фумарат может окисляться до СО2 и Н2О или использоваться для глюконеогенеза. Ацетоацетат - кетоновое тело, окисляемое до конечных продуктов с выделением энергии.
Фенилкетонурия
В печени здоровых людей небольшая часть фенилаланина (∼10%) превращается в фенил-лактат и фенилацетилглутамин.
Этот путь катаболизма фенилаланина становится главным при нарушении основного пути - превращения в тирозин, катализируемого фенил-аланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания метаболитов альтернативного пути: фенилпирувата, фенилацетата, фениллактата и фенилацетилглу-тамина. Дефект фенилаланингидроксилазы приводит к заболеванию фенилкетонурия (ФКУ). Выделяют 2 формы ФКУ:
Классическая ФКУ - наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 20-30 раз (в норме - 1,0-2,0 мг/дл), в моче - в 100-300 раз по сравнению с нормой (30 мг/дл). Концентрация фенилпирувата и фениллактата в моче достигает 300-600 мг/дл при полном отсутствии в норме.
Наиболее тяжёлые проявления ФКУ - нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. При отсутствии лечения больные не доживают до 30 лет. Частота заболевания - 1:10 000 новорождённых. Заболевание наследуется по аутосомно-рецессивному типу.
Тяжёлые проявления ФКУ связаны с токсическим действием на клетки мозга высоких концентраций фенилаланина, фенилпирувата, фениллактата. Большие концентрации фенилаланина ограничивают транспорт тирозина и триптофана через гематоэнцефаличеекий барьер и тормозят синтез нейро-медиаторов (дофамина, норадреналина, серотонина).
Алкаптонурия ("чёрная моча")
Причина заболевания - дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь кислородом воздуха, образует тёмные пигменты алкаптоны. Это метаболическое нарушение было описано ещё в XVI веке, а само заболевание охарактеризовано в 1859 г. Клиническими проявлениями болезни, кроме потемнения мочи на воздухе, являются пигментация соединительной ткани (охроноз) и артрит. Частота - 2-5 случаев на 1 млн новорождённых. Заболевание наследуется по аутосомнорецессивному типу. Диагностических методов выявления гетерозиготных носителей дефектного гена к настоящему времени не найдено.
Альбинизм
Причина метаболического нарушения - врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.
Клиническое проявление альбинизма (от лат. albus - белый) - отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь. Длительное пребывание таких больных под открытым солнцем приводит к раку кожи. Частота заболевания 1:20 000.
33 Образование и обезвреживание аммиака в организме. Орнитиновый цикл синтеза мочевины. Его роль и связь с другими метаболическими путями.
Орнитиновый цикл
Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота (рис. 9-15). Экскреция мочевины в норме составляет ∼25 г/сут.
При повышении количества потребляемых с пищей белков экскреция мочевины увеличивается. Мочевина синтезируется только в печени, что было установлено ещё в опытах И.Д. Павлова. Поражение печени и нарушение синтеза мочевины приводят к повышению содержания в крови и тканях аммиака и аминокислот (в первую очередь, глутамина и аланина).
В 40-х годах XX века немецкие биохимики Г. Кребс и К. Гензелейт установили, что синтез мочевины представляет собой циклический процесс, состоящий из нескольких стадий, ключевым соединением которого, замыкающим цикл, является орнитин. Поэтому процесс синтеза мочевины получил название "орнитиновый цикл", или "цикл Кребса-Гензелейта".
1. Реакции синтеза мочевины
Мочевина (карбамид) - полный амид угольной кислоты - содержит 2 атома азота. Источником одного из них является аммиак, который в печени связывается с диоксидом углерода с образованием карбамоилфосфата под действием карбамоилфосфатсинтетазы I (см. схему А ниже). Далее под действием орнитинкарбамоилтрансферазы карбамоильная группа карбамоилфосфата переносится на α-аминокислоту орнитин, и образуется другая α-аминокислота - цитруллин. В следующей реакции аргининосукцинатсинтетаза связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарную кислоту). Этот фермент нуждается в ионах Mg2+. В реакции затрачивается 1 моль АТФ, но используется энергия двух макроэргических связей. Аспартат - источник второго атома азота мочевины. Далее фермент аргининосукцинатлиаза (аргининосукциназа) расщепляет аргининосукцинат на аргинин и фумарат, при этом аминогруппа аспартата оказывается в молекуле аргинина (см. схему Б ниже).
Аргинин подвергается гидролизу под действием аргиназы, при этом образуются орнитин и мочевина. Кофакторами аргиназы являются ионы Са2+ или Мn2+. Высокие концентрации орнитина и лизина, являющихся структурными аналогами аргинина, подавляют активность этого фермента:
Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.
Первые две реакции процесса происходят в митохондриях гепатоцитов. Затем цитруллин, являющийся продуктом этих реакций, транспортируется в цитозоль, где и осуществляются дальнейшие превращения.
Суммарное уравнение синтеза мочевины:
СО2 + NH3 + Аспартат + 3 АТФ + 2 Н2О → Мочевина + Фумарат + 2 (АДФ + Н3Р04) + АМФ + H4P2O7.
Аммиак, используемый карбамоилфосфатсинтетазой I, поставляется в печень с кровью ворот-вены. Роль других источников, в том числе гсительного дезаминирования глутаминовой эты в печени, существенно меньше.
Аспартат, необходимый для синтеза аргининокцината, образуется в печени путём трансаминирования
аланина с оксалоацетатом. Алании поступает главным образом из мышц и клеток кишечника. Источником оксалоацетата, необходимого для этой реакции, можно считать превращение фумарата, образующегося в реакциях орнитинового цикла. Фумарат в результате двух реакций цитратного цикла превращается в оксалоацетат, из которого путём трансаминирования образуется аспартат (рис. 9-17). Таким образом, с орнитиновым циклом сопряжён цикл регенерации аспартата из фумарата. Пиру ват, образующийся в этом цикле из аланина, используется для глюконеогенеза.
Ещё одним источником аспартата для орнитинового цикла является Трансаминирование глутамата с оксалоацетатом.
2. Энергетический баланс процесса
В реакциях орнитинового цикла расходуются четыре макроэргических связи трёх молекул
АТФ на каждый оборот цикла. Однако процесс превращения аминокислот в безазотистые остатки и мочевину имеет пути компенсации энергозатрат:
при включении фумарата в ЦТК на стадии дегидрирования малата образуется NADH, который обеспечивает синтез 3 молекул АТФ (рис. 9-18);
при окислительном дезаминировании глу-тамата в разных органах также образуется NADH, соответственно - ещё 3 молекулы АТФ.
Затраты энергии происходят также и при трансмембранном переносе веществ, связанном с синтезом и экскрецией мочевины.Первые две реакции орнитинового цикла происходят в митохондриях, а последующие три - в цитозоле. Цитруллин, образующийся в митохондрии, должен быть перенесён в цитозоль, а орнитин, образующийся в цитозоле, необходимо транспортировать в митохондрию. Кроме того, в почках перенос мочевины из крови в мочу происходит путём активного транспорта за счёт градиента ионов натрия, создаваемого К+,Nа+-АТФ-азой, что тоже сопряжено с энергозатратами.
Полный набор ферментов орнитинового цикла есть только в гепатоцитах. Отдельные же ферменты орнитинового цикла обнаруживаются не только в печени, но и в других клетках. В энтероцитах, например, имеется карбамоилфосфат-синтетаза I и орнитинкарбамоилтрансфераза, следовательно, может синтезироваться цитруллин. В почках обнаружены аргининосукцинатсинтетаза и аргининосукцинатлиаза. Цитруллин, образовавшийся в энтероцитах, может поступать в почки и превращаться там в аргинин, который переносится в печень и гидролизуется аргиназой. Активность этих рассеянных по разным органам ферментов значительно ниже, чем в печени.
3. Биологическая роль орнитинового циклаКребса-Гензелейта
Орнитиновый цикл в печени выполняет 2 функции:
превращение азота аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных продуктов, главным образом аммиака;
синтез аргинина и пополнение его фонда в организме.
Регуляторные стадии процесса - синтез карбамоилфосфата, синтез цитруллина и заключительная стадия, катализируемая аргиназой. Эффективность работы орнитинового цикла при нормальном питании человека и умеренных физических нагрузках составляет примерно 60% его мощности. Запас мощности необходим для избежания гипераммониемии при изменениях количества белка в пище. Увеличение скорости синтеза мочевины происходит при длительной физической работе или длительном голодании, которое сопровождается распадом тканевых белков. Некоторые патологические состояния, характеризующиеся интенсивным распадом белков тканей (сахарный диабет и др.), также сопровождаются активацией орнитинового цикла. При избыточном белковом питании количество ферментов орнитинового цикла в печени увеличивается, что приводит к интенсификации синтеза мочевины.
34 Катаболизм сложных белков. Распад гемоглобина. Желтухи.
Продолжительность жизни эритроцитов составляет 120 дней, затем они разрушаются и освобождается гемоглобин. Главными органами, в которых происходят разрушение эритроцитов и распад гемоглобина, являются печень, селезенка и костный мозг, хотя в принципе оба процесса могут происходить и в клетках других органов. Распад гемоглобина в печени начинается с разрыва α-метиновой связи между I и II кольцами порфиринового кольца. Этот процесс катализируется НАДФ-содержащей ок-сидазой и приводит к образованию зеленого пигмента вердоглобина (холеглобина): В приведенных структурных формулах здесь и далее в желчных пигментах М – метильная СН3-группа, В – (—СН=СН2) – винильная группа и П – (—СН2—СН2—СООН) – остаток пропионовой кислоты. Как видно из приведенных формул, в молекуле вердоглобина еще сохраняются атом железа и белковый компонент. Имеются экспериментальные доказательства, что в этом окислительном превращении гемоглобина принимают участие витамин С, ионы Fe2+и другие кофакторы. Дальнейший распад вердоглобина, вероятнее всего, происходит спонтанно с освобождением железа, белка-глобина и образованием одного из желчных пигментов – биливердина. Спонтанный распад сопровождается перераспределением двойных связей и атомов водорода в пиррольных кольцах и метиновых мостиках. Образовавшийся биливердин ферментативным путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом у человека и плотоядных животных: Основное место образования билирубина – печень, селезенка и, по-видимому, эритроциты (при распаде их иногда разрывается одна из метиновых связей в протопорфирине). Образовавшийся во всех этих клетках билирубин поступает в печень, откуда вместе с желчью попадает в желчный пузырь (см. главу 16). Билирубин, образовавшийся в клетках системы макрофагов, называется свободным, или непрямым, билирубином, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин вступает во взаимодействие с диазореактивом Эрлиха. В крови взрослого здорового человека содержится относительно постоянное количество общего билирубина – от 4 до 26 мкмоль/л, в среднем 15 мкмоль/л. Около 75% этого количества приходится на долю непрямого билирубина. Повышение его концентрации в крови до 35 мкмоль/л приводит к желтухе. Более высокий уровень билирубина в крови вызывает явления тяжелого отравления. Непрямой билирубин, поступая с током крови в печень, подвергается обезвреживанию путем связывания с глюку-роновой кислотой. В этом процессе принимают участие особый фермент УДФ-глюкуронилтрансфераза и УДФ-глюкуроновая кислота, являющаяся донором глюкуроновой кислоты. При этом к билирубину присоединяются 2 остатка глюкуроновой кислоты с образованием сравнительно индифферентного комплекса – билирубин-диглюкуронида, хорошо растворимого в воде и дающего прямую реакцию с диазореактивом. В желчи всегда присутствует прямой билирубин. В крови количество прямого и непрямого билирубина, а также соотношение между ними резко меняются при поражениях печени, селезенки, костного мозга, болезнях крови и т.д., поэтому определение содержания обеих форм билирубина в крови имеет существенное значение при дифференциальной диагностике различных форм желтухи. При желчнокаменной болезни в составе желчных камней наряду с основным их компонентом – холестерином всегда обнаруживается непрямой билирубин. Вследствие плохой растворимости в воде он выпадает в осадок в желчном пузыре в виде билирубината кальция, участвующего в формировании камней. Дальнейшая судьба желчных пигментов, точнее билирубина, связана с их превращениями в кишечнике под действием бактерий. Сначала глю-куроновая кислота отщепляется от комплекса с билирубином и освободившийся билирубин подвергается восстановлению в стеркобилиноген, который выводится из кишечника. В сутки человек выделяет около 300 мг стеркобилиногена. Последний легко окисляется под действием света и воздуха в стеркобилин. Механизм бактериальных превращений билирубина до стеркобилина до конца еще не расшифрован. Имеются данные, что промежуточными продуктами восстановления являются последовательно мезобилирубин и мезобилиноген (уробилиноген). После всасывания небольшая часть мезобилиногена поступает через воротную вену в печень, где подвергается разрушению с образованием моно- и дипиррольных соединений. Кроме того, очень небольшая часть стеркобилиногена после всасывания через систему геморроидальных вен попадает в большой круг кровообращения, минуя печень, и в таком виде выводится с мочой. Однако называть его уробилиногеном не совсем точно (см. главу 18). Суточное содержание стеркобилиногена в моче составляет около 4 мг, и, пожалуй, именно стеркобилиноген является нормальной органической составной частью мочи. Если с мочой выделяется повышенное содержание уробилиногена (точнее, мезобилиногена), то это является свидетельством недостаточности функции печени, например, при печеночной или гемолитической желтухе, когда печень частично теряет способность извлекать этот пигмент из крови воротной вены. Химически уробилиноген (мезо-билиноген) неидентичен стеркобилиногену (уробилиногену) мочи. Исчезновение стеркобилиногена (уробилиногена) из мочи при наличии билирубина и биливердина является свидетельством полного прекращения поступления желчи в кишечник. Такое состояние часто наблюдается при закупорке протока желчного пузыря (желчнокаменная болезнь) или общего желчного протока (желчнокаменная болезнь, раковые поражения поджелудочной железы и др.). Таким образом, количественный и качественный анализ желчных пигментов в моче может представлять большой клинический интерес.
В зависимости от вида нарушений метаболизма билирубина и причин гипербилирубинемии можно выделить три типа желтух: желтуху гемолитическую (надпеченочную), желтуху паренхиматозную (печёночную) и желтуху механическую (подпечёночную).
Надпечёночные желтухи — возникают в связи с усилением процесса образования билирубина. При этом повышается его непрямая (неконъюгированная) фракция.
Печёночные желтухи. Печень захватывает непрямой билирубин, превращает (коньюгирует с глюкуроновой кислотой) его в прямой, а секретировать в желчь не может. И он поступает обратно в кровь. Поэтому при этом типе желтухи повышается прямой билирубин.
Подпечёночные желтухи — возникают при нарушении оттока желчи по внепеченочным желчным протокам (обтурационная желтуха).
35 Структура и роль нуклеиновых кислот (ДНК, РНК). Принципы хранения и передачи наследственной информации. Основные этапы биосинтеза ДНК и РНК (репликация и транскрипция).
Нуклеиновые кислоты в организме постоянно обновляются. В норме синтез и распад находятся в состоянии динамического равновесия. Катаболизм нуклеиновых кислот начинается с гидролиза 3′, 5′-фосфодиэфирной связи под действием ферментов нуклеаз:
- ДНКазы — расщепляют ДНК;
- РНКазы — расщепляют РНК.
Среди ДНК аз и РНК аз различают:
1) экзонуклеазы (5′ и 3′) отщепляют концевые мононуклеотиды:
- 3′-экзонуклеазы — отщепляют мононуклеотид с 3′-конца молекулы;
- 5′-экзонуклеазы — отщепляют 5′-концевой мононуклеотид;
2) эндонуклеазы — расщепляют внутренние 3, 5-фосфодиэфирные связи, специфичны к мононуклеотидной последовательности, есть высокоспецифичные: рестриктазы — используются в генной инженерии.
Далее происходит отщепление фосфата от мононуклеотида с участием нуклеотидаз и образованием нуклеозидов.
Нуклеозид может расщепляться путем гидролиза под действием нуклеозидазы на азотистое основание и пентозу, но чаще происходит фосфоролиз — нуклеозид расщепляется на азотистое основание и фосфорибозу.
Пищеварительные и лизосомальные нуклеазы низкоспецифичны, имеют упрощенное строение активного центра. У высокоспецифичных нуклеаз (рестриктазы) сложное строение активного центра. Они способны «узнавать» целую последовательность нуклеотидов из 4–10 пар и расщеплять одну-единственную связь в строго определенном месте.
Пентозы, образующиеся в ходе катаболизма нуклеиновых кислот, утилизуются во 2-м этапе ГМФ-пути. Азотистые основания в зависимости от их типа подвергаются катаболизму по-разному. Синтез мононуклеотидов de novo происходит с затратой АТФ из CO2, рибозо-5-фосфата и заменимых аминокислот.
Роль аминокислот в синтезе мононуклеотидов: аспарагин — донор амидной группы; аспарагиновая кислота:
1) донор аминогруппы;
2) участвует в синтезе всей молекулой; глицин:
- донор активного С1;
- участвует в синтезе всей молекулой;
- может видоизменяться в серин — донор активного С1.
Нуклеиновые кислоты. ДНК. РНК. Нуклеотиды. Строение нуклеотидов. Нуклеиновые кислоты, как и белки, необходимы для жизни. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов. Название «нуклеиновые кислоты» отражает тот факт, что локализуются они главным образом в ядре (nucleus — ядро). При специфическом окрашивании на нуклеиновые кислоты ядра бывают очень хорошо видны в световом микроскопе. Выяснение структуры ДНК (дезоксирибонуклеиновой кислоты) — одного из двух существующих типов нуклеиновых кислот — открыло новую эпоху в биологии, так как позволило, наконец, понять, каким образом живые организмы хранят информацию, необходимую для регулирования их жизнедеятельности и каким образом передают эту информацию своему потомству. Выше мы уже отметили, что нуклеиновые кислоты состоят из мономерных единиц, называемых нуклеотидами. Из нуклеотидов строятся чрезвычайно длинные молекулы — полинуклеотиды. Чтобы понять структуру полинуклеотидов, необходимо, следовательно, сначала ознакомиться с тем, как построены нуклеотиды. Нуклеотиды. Строение нуклеотидов Молекула нуклеотида состоит из трех частей — пятиуглеродного сахара, азотистого основания и фосфорной кислоты. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т. е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот — рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу. В дезоксирибозе — ОН-группа при 2-м атоме углерода заменена на атом Н, т. е. в ней на один атом кислорода меньше, чем в рибозе. В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов и два — к классу пиримидинов. Основной характер этим соединениям придает включенный в кольцо азот. К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов — цитозин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК). Тимин химически очень близок к урацилу (он представляет собой 5-метилурацил, т. е. урацил, в котором у 5-го углеродного атома стоит метильная группа). В молекуле пуринов имеется два кольца, а в молекуле пиримидинов — одно. Основания принято обозначать первой буквой их названия: А, Г, Т, У и Ц. Нуклеиновые кислоты являются кислотами потому, что в их молекуле содержится фосфорная кислота. На рисунке показано, как сахар, основание и фосфорная кислота, объединяясь, образуют молекулу нуклеотида. Соединение сахара с основанием происходит с выделением молекулы воды, т. е. представляет собой реакцию конденсации. Для образования нуклеотида требуется еще одна реакция конденсации — между сахаром и фосфорной кислотой. Разные нуклеотиды отличаются друг от друга природой Сахаров и оснований, которые входят в их состав. Роль нуклеотидов в организме не ограничичается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют собой нуклеотиды. Таковы, например, аденозинтрифосфат (АТФ), циклический аденозинмонофосфат (цАМФ), кофермент А, никотинамидаденинди-нуклеотид (НАД), никотинамидадениндинуклеотидфосфат (НАДФ) и флавинадениндинуклеотид (ФАД).
Репликация и транскрипция ДНК
При синтезе «неинформационной» молекулы (например, гликогена) чистота конечного продукта обеспечивается специальным ферментом. Для фермента характерна субстратная специфичность, то есть его активный центр способен присоединять только молекулу UDP-глюкозы и нередуцирующий конец молекулы гликогена, которая должна быть удлинена. Таким образом, активный центр фермента можно рассматривать как «матрицу», поскольку между молекулами субстрата осуществляется комплементарная подгонка.
При синтезе макромолекул ДНК, РНК или белков один активный центр фермента не в состоянии обеспечить специфическую последовательность четырёх кодирующих единиц. Он может связывать между собой только один или несколько «строительных блоков», а нуклеиновые кислоты содержат в своём составе тысячи нуклеотидов. Поэтому природа пошла здесь по другому пути: матрицей для синтеза цепи молекулы ДНК служит другая цепь ДНК.
Транскрипция ДНК в ходе деления клеток начинается с разделения двух цепей, каждая из которых становится матрицей, синтезирующей нуклеотидную последовательность новых цепей. Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований. Репликация катализуется несколькими ДНК-полимеразами, а транскрипция – ферментом РНК-полимеразой. После репликации дочерние спирали закручиваются обратно уже без затрат энергии и каких-либо ферментов.
Сравнительно неплохо изучен процесс репликации и транскрипции ДНК бактерий. Их ДНК способна реплицироваться, не распрямляясь в линейную молекулу, то есть в кольцевой форме. Процесс, по-видимому, начинается на определённом участке кольца и идёт сразу в двух направлениях (в одном – непрерывно, во втором – фрагментарно с последующим «склеиванием» фрагментов). Инициация репликации находится под контролем клеточной регуляции. Скорость репликации ДНК составляет около 45 000 нуклеотидов в минуту; таким образом, родительская вилка расплетается со скоростью 4500 об/мин.
Частота ошибок при ДНК-репликации не превышает 1 на 109–1010 нуклеотидов. Столь высокая степень точности воспроизведения информации определяется не только комплементарностью нуклеотидов, но и действием ДНК-полимераз, которые способны распознать ошибку в образующемся коде и исправить её. Следует заметить, что точность воспроизведения РНК и белков в тысячи раз ниже. Это связано с тем, что транскрипция итрансляция, затрагивающие только одну клетку, – не столь жизненно важные процессы, как репликация, которая определяет будущее всего вида. Репликация эукариот при такой же схеме длилась бы несколько месяцев (скорость движения репликативных вилок составляет всего микрометр в минуту). Поэтому в ДНК эукариот процесс начинается одновременно в сотнях и тысячах точек. Все хромосомы в клетке должны реплицироваться одновременно, и одновременно в клетке работают многие тысячи вилок. Между репликацией и транскрипцией есть существенная разница: в первом случае копируется вся молекула ДНК, во втором, как правило, только отдельные гены. Минимальная длина и-РНК определяется длиной полипептидной цепи, для которой она предназначена.
36 Общая схема биосинтеза белка у прокариот и эукариот. Генетический код. Постсинтетическая модификация белка.
1. Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.
2. Процессинг (только у эукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков.
3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.
4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.
5. Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.
6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.
Генетический код — единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.
Основные свойства генетического кода следующие:
1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказывается равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).
2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов — 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции. Так, в молекуле иРНК три из них УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК,   не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.
3. Одновременно с избыточностью коду присуще свойство однозначности, которое означает, что каждому кодону соответствует только одна определенная аминокислота.
4. Код коллинеарен, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.
5. Генетический код неперекрываем и компактен, т. е. не содержит «знаков препинания».
6. Генетический код универсален, т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.
Посттрансляционная модификация — это ковалентная химическая модификация белка после его синтеза на рибосоме. Для многих белков посттрансляционная модификация оказывается завершающим этапом биосинтеза, который является частью процесса экспрессии генов. Наряду с альтернативным сплайсингомпосттрансляционные модификации увеличивают разнообразие белков в клетке. 37 Молекулярная патология обмена углеводов, липидов, аминокислот и гемоглобина:
Нарушения углеводного обмена
Молекулярные нарушения углеводного обмена
Молекулярные нарушения связаны с врожденной недостаточностью ферментов. К ним относятся врожденная недостаточность лактазы, сахаразы и пр. ферментов, расщепляющих дисахариды до моносахаридов, в связи с чем последние не могут всасываться в кровь и выводятся из организма с калом.
Галактоземия – нарушение распада галактозы в печени из-за недостатка галактозо-1-фосфата. Характеризуется повышенным содержанием галактозы в крови – галактоземией и в моче – галактозурией.
Эссенциальная фруктозурия – связана с недостаточностью фосфофруктокиназы, которая катализирует фосфорилирование фруктозы. Проявляется фруктозонемией и фруктозоурией. Ряд подобных нарушений обусловлены наследственной недостаточностью того или иного фермента и проявляются накоплением субстратов этого фермента в крови и моче, а также снижением концентрации последующих и конечных продуктов углеводного обмена. Основным клиническим биохимическим показателем нарушений углеводного обмена является изменение концентрации в крови глюкозы.
Гипергликемия – увеличение содержания глюкозы в крови. Может носить физиологический характер в случае приема богатой углеводами пищи (алиментарная гипогликемия) или в результате одномоментной физической нагрузки: адреналин, глюкокортикостероиды и катехоламины усиливают глюконеогенез и распад гликогена. Физиологические гипергликемии носят кратковременный характер. Патологические типы гипергликемий обусловлены эндокринными расстройствами, в частности нарушением оптимального соотношения между секрецией гормонов гипер- и гипогликемического действия.
Наиболее распространенная форма патологической гипергликемии – сахарный диабет, обусловленный дефицитом инсулина.  В норме продукцию инсулина секреторными клетками поджелудочной железы стимулирует глюкоза, лейцин и глутаминовая кислота, кетоновые тела и некоторые жирные кислоты.
Помимо сахарного диабета гипергликемии могут быть обусловлены повышенной секрецией соматотропного гормона и АГКТ, катехоламинов и глюкокортикоидов как результат заболеваний гипоталамуса и надпочечников.
Гипогликемия может носить физиологический характер вслед за алиментарной гипергликемией как результат компенсаторного выброса инсулина.
Патологическая гипогликемия может быть результатом: 1)      гиперинсулинемии;2)      недостаточностью ферментов расщепляющих дисахариды в кишечнике;3)      заболеваний печени с торможением гликогенобразования и глюконеогенеза; 4)      дефицита глюкокортикоидов;5)      гипоксии.
Нарушения липидного обмена
Связаны в первую очередь с нарушениями  их переваривания и всасывания. Обязательный признак всех нарушений – стеанорея, появление в кале липидов. В зависимости от этиологии различают три группы стеанорей:
1)      панкреатогенная стеанорея  обусловлена дефицитом панкреатической липазы. Это приводит к снижению интенсивности процессов гидролитического расщепления в кишечнике триацилглицеридов до глицерина и ЖК. Наблюдается обычно при панкреатинах, гипоплазии поджелудочной железы, наследственном дефиците липазы;
2)      гепатогенная стеанорея связана с нарушением поступления желчи в 12-перстную кишку. В связи с этим жиры не эмульгируются и  намного хуже подвергаются гидролизу липазой. Наблюдается при закупорке или сужении желчных путей, гепатитах и циррозе. Помимо стеанореи в кале отсутствуют желчные пигменты;
3)      энтерогенная стеанорея  обусловлена снижением метаболической активности слизистой оболочки  тонкого отдела, где происходит синтез собственных липидов организма. Наблюдается при наследственном дефиците ферментов синтеза липидов, воспалении слизистой оболочки и обширной резекции тонкого отдела кишечника.
Всосавшиеся в слизистую оболочку липиды транспортируются по крови и лимфе в составе липопротеидного комплекса. Повышенное содержание липопротеинов – гиперлипопротеинемия, пониженное – гипопротеинемия.
Гиперлипопротеинемии обусловлены замедленным распадом липопротеидного комплекса (недостаточность фермента липопротеинлипазы) или как следствие гиперинсулинизма, индуцирующего в печени усиленный синтез триглицеридов из углеводов. Гиперлипопротеинемия в комплексе с гиперхолестеролемией (повышенное содержание в крови холестерола) являетются главной причиной атеросклероза. Напомним, что холестерол – важнейшая составная часть клеточных мембран и липопротеинов. По химическому строению это одноатомный циклический мононенасыщенный спирт, производное циклопентанпергидрофенантрена. Используется для биосинтеза стероидных гормонов, желчных кислот и предшественника витамина Д3. Поступающий с пищей холестерол в клетках слизистой подвергается этерификации при участии фермента холестеринэстеразы. Далее он поступает в лимфу, где связывается с липопротеинами очень низкой плотности (ЛПОНП) и входит в состав хиломикронов, а в крови в состав липопротеинов низкой плотности (ЛПНП) и также хиломикронов
Гиперхолистеролемии связаны прежде всего с нарушением желчегенеза и транспорта холестерола липопротеидами, а именно отсутствие (или исчезновение) у клеток рецепторов на ЛПНП. Результатом этого является развитие холестериозов.
1)   неосложненный (физиологичекая старость) накопление холестерола в плазматических мембранах клеток в связи с уменьшением стероидогенеза;
2)   осложненный (атеросклероз) – отложение холестерола в стенках артерий. Предпосылкой являются повреждения эндотелия сосудов в результате воспалений, повышенной свертываемости крови, гипертонии, воздействия токсинов. Холестерол и липопротеины проникают в клетки эндотелия сосудов, что провоцирует еще больший их поток в клетки. В них есть ферментная система этерификации холестерола, но не системы его разрушения. Поэтому эфиры холестерола накапливаются в большом количестве в клетках эндотелия и в межклеточном пространстве. Где инкапсулируются за счет разрастания соединительной ткани. Так образуются атеросклеротические бляшки.
Гиполипопротеинемии  могут быть связаны с
1)  нарушением переваривания, всасывания жиров в тонком отделе кишечника, как результат дефицита липазы и нарушениями образования и поступления желчи;
2)   гипертиреозом, который приводит к повышению катаболизма сывороточных липидов;
3)  генетическим нарушением синтеза липопротеинов и хиломикронов.
Нарушения обмена белков
Нарушения переваривания и всасывания:
1)  Дефицит пепсина может возникать при частичной резекции желудка за счет уменьшения секреции пепсиногена главными клетками слизистой (их количество сокращено), кроме того, при пониженной кислотности  (низкое содержание соляной кислоты) пепсиноген плохо активируется до пепсина. В результате этого белки не полностью расщепляются до пептидов и вся нагрузка по их дальнейшему перевариванию ложится на тонкий отдел кишечника.
2)  Дефицит трипсина, энтеропептидазы, карбоксипептидазы может быть как результат смещения рН в более кислую сторону, патологии панкреаса или нарушение секреции желудком гормона гастрина, который контролирует секрецию ферментов панкреаса. В результате негидролизованные белки и пептиды не могут всосаться в стенки кишечника и поступают в тонкий отдел, где подвергаются массовому гниению. При этом происходит аутоинтоксикация организма на фоне низкого содержания в крови аминокислот.
3)  Нарушение работы гамма-глутамильного цикла всасывания аминокислот из-за дефицита любого фермента, катализирующего эти реакции.
Молекулярные нарушения обмена аминокислот
Обычно имеют наследственный характер, при этом аминокислоты и их метаболиты оказывают токсический эффект на организм. В первую очередь это выражается в виде расстройства деятельности центральной нервной системы (ЦНС).
Гипераминоацидемии – повышенное содержание в крови отдельных аминокислот и аминоацидурии – обнаружение в моче аминокислот обусловлены дефектом ферментов обмена аминокислот (первичные аминоацидурии) . Типичный пример:
фенилкетонурия – нарушение обмена фенилаланина, как результат дефекта фенилаланингидроксилазы. Фенилаланин при этом не вовлекается в окислительно-восстановительный распад и накапливается в большом количестве в крови. Часто превращается в фенилпируват, фениллактат, и фенилацетат, которые можно обнаружить в моче. Подобным образом проявляется и нарушение обмена триптофана (в моче индолацетат, индоллактат, индолпируват), метионина, цистеина, тирозина и рядя других аминокислот. Вторичные аминоацидурии связанные с нарушением канальциевого транспорта аминокислот в почках.Нарушение обмена пуриновых и пиримидиновых оснований
Проявляются нарушением содержания в крови мочевой кислоты (конечного продукта пуринового обмена) -  гиперурикемия. Типичное заболевание, связанное с гиперурикемией, – подагра – кристаллизация мочевой кислоты в мезенхимальных тканях и синоваильной жидкости. Известны два энзимдефекта, приводящие к урикемии, а также снижению содержания в крови уратсвязывающего белка.
Нарушение приримидинового обмена проявляется в виде оротатцидурии: повышенном выделении с мочой оротовой кислоты. Причина – дефицит дегидрогеназы, катализирующей две последние стадии синтеза УТФ. Недостаток УТФ приводит к отставанию в физическом и умственном развитии.
Нарушение обмена гемоглобина относятся либо к белковому компоненту, либо к гему.
Гемоглобинопатии – аномалии, связанные с нарушением механизма синтеза белкового компонента гемоглобина при нормальной структуре гема. Выявлено более 15 видов аномальных молекул гемоглобина, где в альфа- или бета-цепи произошла замена одной из АК. Известно несколько видов мутантных гемоглобинов, где произошла замена остатка гистидина, который связывает железо гема с белковой частью молекулы, на другие АК. Получаются так называемые М-гемоглобины, которые не способны транспортировать кислород.
Порфирии – нарушения отдельных этапов синтеза гема ведут к накоплению в организме отдельных порфиринов или их предшественников. Они легко откладываются в коже, что приводит к фотосенсибилизации.
Нарушения, связанные с распадом гемоглобина проявляются в виде билирубинемий – повышении содержания в крови билирубина. Клинически это может проявляться в виде желтушности кожи и слизистых оболочек. Билирубинемии развиваются как результат нарушений извлечения билирубина из крови, его связывания и выделения при заболеваниях печени.
Нарушение биосинтеза мочевины
Может проявляться в виде недостаточности карбомоилфосфатсинтетазы, катализирующей включение аммиака в орнитиновый цикл. Кроме того, известны случае дефицита всех остальных ферментов цикла мочевины, а поскольку аммиак является ядовитым веществом, то нарушения синтеза мочевины проявляется в виде расстройств нервной системы или развития комы.
38 Классификация и биологическая роль витаминов: Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе, но до сих пор сохраняются и буквенные обозначения. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины.
ВИТАМИНЫ, РАСТВОРИМЫЕ В ЖИРАХ.
Витамин A (антиксерофталический).
Витамин D (антирахитический).
Витамин E (витамин размножения).
Витамин K (антигеморрагический).
ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ.
Витамин В1 (антиневритный).
Витамин В2 (рибофлавин).
Витамин PP (антипеллагрический).
Витамин В6 (антидермитный).
Пантотен (антидерматитный фактор).
Биотин (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).
Инозит.
Парааминобензойная кислота (фактор роста бактерий и фактор пигментации).
Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).
Витамин В12 (антианемический витамин).
Витамин В15 (пангамовая кислота).
Витамин С (антискорбутный).
Витамин Р (витамин проницаемости).
Витамины - это низкомолекулярные органические вещества разнообразного строения, объединены в одну группу по следующим признакам: витамины абсолютно необходимы организму и в очень небольших количествах; витамины не синтезируются в организме и должны поступать извне или синтезироваться микрофлорой кишечника.
Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жиро-растворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур.
Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений деятельности органов и систем при дефиците любого из витаминов. Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин «С») не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы.
Нарушения регуляции процессов обмена и развитие патологии часто связаны с недостаточным поступлением витаминов в организм, полным отсутствием их в потребляемой пище либо нарушениями их всасывания, транспорта или, наконец, изменениями синтеза коферментов с участием витаминов. В результате развиваются авитаминозы - заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают гиповитаминозы при недостатке витамина в организме. Причины развития гипо- и авитаминозов.
39 Функциональное значение витаминов A, D, E, K, C в формировании тканей зуба.
Витамин А (ретинола ацетат) оказывает общеукрепляющее действие; нормализует тканевый обмен; участвует в окислительно-восстановительных процессах; необходим для нормального роста; участвует в формировании и поддержании структуры и функции костей, зубов, кожи, волос; участвует в синтезе зрительного пигмента, необходим для сумеречного и цветного зрения; обеспечивает целостность эпителиальных тканей, омолаживает клеточную популяцию; стимулирует регенерацию кожи.
Витамин Е (α-токоферола ацетат) обладает антиоксидантными свойствами, защищает клетки от разрушений, наносимых свободными радикалами; обладает уникальным свойством предохранять жиры (в том числе и холестерин) от окисления, поддерживает стабильность эритроцитов, предупреждает гемолиз; участвует в синтезе гема и белков; оказывает положительное влияние на функции половых желез, нервной и мышечной ткани, участвует в клеточном дыхании и других метаболических процессах организма.
Витамин С (аскорбиновая кислота) участвует в формировании и поддержании структуры и функции костей, хрящей, зубов и десен; укрепляет стенки сосудов и капилляров; обеспечивает синтез коллагена, необходимого для обеспечения прочности костной ткани, сухожилий, связок, кожи; влияет на образование гемоглобина, созревание эритроцитов. Витамин С не образуется в организме, а поступает только с пищей. Он участвует в регулировании окислительно-восстановительных процессов, углеводном обмене, свертываемости крови, регенерации тканей, в синтезе стероидных гормонов. Повышает устойчивость организма к инфекциям, обладает выраженными антиоксидантными свойствами, способствует снижению уровня холестерина в крови.
Витамин D не только укрепляет кости и улучшает состояние кожи, он повышает устойчивость к самым разным болезням, регулирует деятельность щитовидной железы и нормализует свёртываемость крови. Болезни сердца, диабет, артрит, атеросклероз и даже рак – во многих случаях от систематического долговременного недостатка витамина D. Состояние кожи, её здоровье, устойчивость к кожным болезням от безобидных язвочек и отшелушивания, до псориаза - это ещё одна «специализация» витамина D.
Витамина К в организме – обеспечение нормального свёртывания крови: он помогает в образовании особого химического соединения, которое синтезируется печенью и способствует свёртыванию крови. Кроме того, витамин К играет важную роль в формировании и восстановлении костей – он обеспечивает синтез белка костной ткани, на котором кристаллизуется кальций. Это очень важно для детишек, а также для неосторожных взрослых, получивших перелом. Витамин К жизненно необходим женщинам в период менопаузы – в это время у них часто развиваетсяостеопороз (разрежение костной ткани, которое опасно долго незаживающими переломами). Витамин К повышает прочность стенок сосудов. Это особенно важно для тех, кто активно занимается физкультурой и спортом – витамин К снижает риск кровопотерь при травмах, а также усиливает сокращения мышц. Входя в состав клеточных мембран, витамин К участвует в образовании основных источников энергии в нашем организме, нормализует двигательную функцию желудочно-кишечного тракта и работу мышц, помогает избежать образования камней в почках. Витамин К часто назначают беременным в целях профилактики – для предотвращениягибели плода от кровотечения.
40 Гормоны. Классификация. Механизм действия гормонов белковой, стероидной и тиреодной природы Взаимодействие гормона с рецептором — это обязательный начальный этап, который запускает целый каскад реакций, в результате которого гормон осуществляет свой физиологический эффект: например, повышение синтеза специфических белков-рецепторов, повышение синтеза гормона, сокращение гладкомышечных клеток и т.п. Рассмотрим более конкретно эти каскады.
1.Механизм действия стероидных гормонов.
Стероидные гормоны легко проникают внутрь клетки через поверхностную плазматическую мембрану в силу своей липофильности и взаимодействуют в цитозоле со специфическими рецепторами. В цитозоле образуется комплекс «гормон-рецептор», движущейся в ядро. В ядре комплекс распадается и гормон взаимодействует с ядерным хроматином. В результате этого происходит взаимодействие с ДНК, а затем — индукция матричной РНК. В ряде случаев стероиды, например, стимулируют в одной клетке образования 100-150 тыс. молекул м РНК, в которых закодирована структура лишь 1-3 белков. Итак, первый этап действия стероидных гормонов — активация транскрипции. Одновременно происходит активация РНК-полимеразы, осуществляющего синтез рибосомальной РНК (р-РНК). За счет этого образуется дополнительное количество рибосом, которые связываются с мембранами эндоплазматического ретикулума и образуют полисомы. Вследствие всего комплекса событий (транскрипции и трансляции) через 2-3 часа после воздействия стероида наблюдается усиленный синтез индуцированных белков. В одной клетке стероид влияет на синтез не более 5-7 белков. Известно также, что в одной и той же клетке стероид может вызвать индукцию синтеза одного белка и репрессию синтеза иного белка. Это происходит вследствие того, что рецепторы данного стероида неоднородны.
2.Механизм действия тиреоидных гормонов.
Рецепторы находятся в цитоплазме и в ядре. Тиреоидные гормоны (а точнее — трийодтиронин, потому что тироксин должен отдать один атом йода и превратиться в трийодтиронин, прежде чем совершить свой эффект) связываются с ядерным хроматином и индуцируют синтез 10-12 белков — это происходит за счет активации механизма транскрипции. Тиреоидные гормоны активируют синтез многих белков-ферментов, регуляторных белков-рецепторов. Тиреоидные гормоны индуцируют синтез ферментов, участвующих в метаболизме, и активируют процессы энергообразования. Одновременно тиреоидные гормоны повышают транспорт аминокислот и глюкозы через мембраны клеток, усиливают доставку аминокислот в рибосомы для нужд синтеза белка.
3.Механизм действия белковых гормонов, катехоламинов, серотонина, гистамина.
Эти гормоны взаимодействуют с рецепторами, расположенными на поверхности клетки, а конечный эффект действия этих гормонов может быть — сокращение, усиление ферментных процессов, например, гликогенолиз, повышение синтеза белка, повышение секреции и т.д. Во всех этих случаях лежит процесс фосфорилювания белков-регуляторов, перенос фосфатных групп от АТФ до гидроксильных групп серина, треонина, тирозина, белка. Этот процесс внутри клетки осуществляется при участии ферментов-протеинкиназы. Протеинкиназы — это АТФ-фосфотрансферазы. Их много разновидностей, для каждого белка — своя протеинкиназа. Например, для фосфорилазы, участвующей в расщеплении гликогена, протеинкиназа называется «киназа фосфорилазы».
В клетке протеинкиназы находятся в неактивном состоянии. Активация протеинкиназы осуществляется за счет гормонов, действующих на поверхностно расположенные рецепторы. При этом сигнал от рецептора (после взаимодействия гормона с этим рецептором) в протеинкиназы передается при участии специфического посредника, или вторичного мессенджера. В настоящее время выяснено, что таким мессенджером могут быть: а) ц-АМФ, б) ионы Са, в) диацилглицерин, г) какие-то другие факторы (вторичные посредники неизвестной природы). Таким образом, протеинкиназы могут быть ц-АМФ-зависимые, Са-зависимые, диацилглицерин-зависимые.
Известно, что в качестве вторичного посредника ц-АМФ выступает при действии таких гормонов как АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, МСГ, АДГ, катехоламины (бета-адренорецепторного эффект), глюкагон, паратирин (паратгормон), кальцитонин, секретин, гонадотропин, тиролиберин, липотропин.
Группа гормонов, для которых мессенджером является кальций: окситоцин, вазопрессин, гастрин, холецистокинин, ангиотензин, катехоламины (альфа-эффект).
Для некоторых гормонов пока не идентифицированы посредники: например, СТГ, пролактин, хорионический соматомамматропин (плацентарный лактоген), соматостатин, инсулин, инсулиноподобный фактор роста и т.п.
Рассмотрим работу ц-АМФ как мессенджера: ц-АМФ (циклического аденозинмонофосфата) образуется в клетке под влиянием фермента аденилатциклазы из молекул АТФ, АТФ — ц-АМФ. Уровень ц-АМФ в клетке зависит от активности аденилатциклазы и от активности фермента, который разрушает ц-АМФ (фосфодиэстеразы). Гормоны, которые действуют за счет ц-АМФ, как правило, вызывают изменение активности аденилатциклазы. Этот фермент имеет регуляторную и каталитическую субъединицы. Регуляторная субъединица тем или иным способом связана с гормональным рецептором, например, за счет G-белка.При воздействии гормона происходит активация регуляторной субъединицы (в «покое» эта субъединица связана с гуанизиндифосфатом, а под влиянием гормона она связывается с гуанизинтрифосфатом и поэтому активируется). В результате повышается активность каталитической субъединицы, которая расположена на внутренней стороне плазматической мембраны, и поэтому повышается содержание ц-АМФ. Это, в свою очередь, вызывает активацию протеинкиназы (точнее, ц-АМФ-зависимой протеинкиназы), в дальнейшем вызывает фосфорилирование, которое приводит к конечному физиологического эффекта, например, под влиянием АКТГ клетки надпочечников производят в больших количествах глюкокортикоиды, а под влиянием адреналина в ГМК, содержащие бета-адренорецепторов, происходит активация кальциевого насоса и расслабления ГМК.
Итак: гормон + рецептор — активация аденилатциклазы — активация протеинкиназы — фосфорилирования белка (например, АТФ-азы).
Классификация гормонов:
1.Стероидные: а) Кортикостероиды (Глюко-корти-коиды, Минера-локорти-коиды); б) Половые (Ан-дро-гены, Эс-тро-гены).
2.Производные аминокислот: а) Трипто-фана мела-тонин (гормон эпифиза);б) Тирозина (Катехол-амины, Тиреоид-ные гормоны);
3.Белковопептидные гормоны:
1.Нейрогипофи-зарные
2.Гипоталамичес-кие релизингфакторы
3.Пептиды поджелудочной железы (инсулин, глюкагон)
4.Гипофизарные (пептиды типа АКТГ)
5.Белки паращи-товидных желез (паратгормон, кальцитонин)41 Гормональная регуляция гомеостаза кальция в обеспечении процессов минерализации и деминерализации.
Парагормон и кальцитонин
Гормоны секретируются клетками паращитовидной железы. Местом синтеза кальцитонина является также щитовидная железа.
Парагормон был получен в частично очищенном состоянии в 1925 году из паращитовидной железы быка. Он представляет собой простую полипептидную цепь, состоящую из 84 аминокислотных остатков с молекулярной массой 9500 Да; период полураспада около 2 мин. Ген, кодирующий биосинтез парагормона, локализуется на 11-й хромосоме (11р15).
Парагормон образуется на рибосомах в виде препропарагормона – полипептида, состоящего из 115 аминокислотных остатков. В результате локального протеолиза отщепляется 31 аминокислотный остаток с N-конца и образуется активный гормон, который запасается в секреторных гранулах. Регуляция секреции парагормона осуществляется несколькими механизмами. В течение короткого времени биосинтез парагормона регулируется ионизированным кальцием, а в течение длительного времени – 1,25(ОН)2 D3 - совместно с кальцием. Скорость секреции обратно пропорциональна концентрации в плазме крови.
Метаболизм и деградация парагормона осуществляется в основном в печени (около 62-70%), а также в почках (30-38%).
Парагормон оказывает многообразное действие в зависимости от ткани-мишени. Все это позволило L. Mallette (1991) высказать мнение, что парагормон является прогормоном, а его фрагменты обладают биологическим действием. Считается, что его аминотерминальный домен (аминокислотные остатки 1-34) ответствен за регуляцию минерального обмена посредством взаимодействия с соответствующими рецепторами в костях и почках; карбокситерминальный домен (аминокислотные остатки 53-84) – за регуляцию функции остеокластов, а средний домен (аминокислотные остатки 28-48), возможно, за транспорт кальция и фосфора
Парагормон взаимодействует с плазматическими рецепторами, которые являются гликопротеинами с молекулярной массой около 800 кДа и состоят из 585-594 аминокислотных остатков. Рецептор парагормона, как и все другие рецепторы, относящиеся к семейству рецепторов, оперирующих через G-белок, имеет 3 цепи внеклеточного фрагмента, 7 трансмембранных фрагментов и внутриклеточную часть рецептора, также представленную 3 петлями полипептидной цепочки.
Такое взаимодействие приводит к активации аденилатциклазы и повышению синтеза цАМФ, который активирует протеинкиназу, фосфолипазу С, диацилглицерин, инозитолтрифосфат и участвует в регуляции транспорта ионов кальция, натрия и калия через клеточные мембраны.
Парагормон оказывает множественное действие на костную ткань. Он опосредованно активирует ферменты коллагенозу и глюкуронидазу, что вызывает деструкцию органических компонентов кости, в частности коллагена и гликозамингликанов. В минеральных компонентах костной ткани под действием парагормона происходит солюбилизация гидроксиапатита и высвобождение в кровь кальция и фосфора.
Было установлено, что парагормон активирует процессы транскрипции в остеокластах – клетках, резорбирующих кости. Влияние парагормона на резорбцию костной ткани на пострецепторном уровне осуществляется в основном через инозитолтрифосфат и диацилглицерин, но не через цАМФ, которые образуются посредством активации фосфолипазы С и ионов Са.
Наряду с этим парагормон оказывает влияние на обмен фосфора и магния.
Кальций всасывается в верхнем отделе тонкого кишечника. Это активный процесс, осуществляемый транспортным кальцийсвязывающим белком, который активизируется 1,25-дигидроксивитамином D. Всасывание кальция в кишечнике усиливается при увеличении поступления кислот с пищей, диете с высоким содержанием белка, саркоидозе, беременности, тогда как щелочи, глюкокортикоиды, избыток фосфатов и оксалатов снижают его всасывание в кишечнике.
Свое влияние парагормон на натрий-фосфатный котранспорт оказывает путем повышения образования цАМФ и путем активизации фосфолипазы С и образования диацилглицерина и инозитолтрифосфата.
Кальцитонин был впервые получен С. Н. Коопом и соавторами в 1962 году. Кальцитонин человека представляет собой полипептид, состоящий из 32 аминокислот с мол. м. 3000 Да с периодом полураспада около 5 мин. Гормон может образовывать путем ковалентной связи димерные и, не исключено, полимерные формы, однако биологически активной является только мономерная форма гормона. Было показано, что в процессе трансляции образуется препрокальцитонин и прокальцитонин с мол. м. около 13 кДа.
Специфическим стимулятором секреции кальцитонина является повышение концентрации кальция в крови более 2,25 ммоль/л (9 мг/100 мл). Кроме того, стимуляторами секреции кальцитонина являются катехоламины, осуществляющие свое действие через β-адренергические рецепторы, холецистокинин, глюкагон, гастрин. Глюкагон и катехоламины, взаимодействуя с рецепторами, увеличивают содержание цАМФ, который стимулирует секрецию кальцитонина, так же как и парагормона, т.е. цАМФ является внутриклеточным медиатором секреции кальцитонина. Кальцитонин метаболизируется в почках, печени и, возможно, в костной ткани.
Биологический эффект кальцитонина проявляется снижением уровня кальция и фосфора в крови, что является следствием влияния кальцитонина на костную ткань и почки. В кости кальцитонин угнетает процессы резорбции кальция. Это проявляется снижением экскреции гидроксипролина и содержания кальция в крови. Одновременное уменьшение фосфора в сыворотке крови является результатом снижения мобилизации фосфора из кости и непосредственной стимуляции поглощения фосфора костной тканью. Кальцитонин ингибирует активность и количество остеокластов. Уже через 1 ч после введения кальцитонина уменьшается образование остеокластов из клеток-предшественников. Механизм действия кальцитонина опосредуется цАМФ и активацией протеинкиназ, что сопровождается изменением активности щелочной фосфатазы, пирофосфатазной активности и активности ферментов.
42 Биохимия крови. Состав крови. Буферные системы крови. Белки плазмы крови. Значение определения нормальных и патологических компонентов крови.
Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты.
Благодаря работе сердца кровь циркулирует по замкнутой системе кровеносных сосудов и осуществляет транспорт различных химических веществ. Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция); доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция); уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция); перемещает промежуточные продукты обмена веществ, синтез и использование которых происходит в разных органах. Кровь участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням.
Защитная функция крови имеет две стороны. Во-первых, в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного реагирования, которые защищают организм от любой чужеродной молекулы. Во-вторых, это способность крови свёртываться. При повреждении сосуда прерывается замкнутость циркуляции крови, а уменьшение количества крови может привести к серьёзным нарушениям функций клеток, вплоть до их гибели. Кровь здорового человека образует тромб в месте повреждения, который закупоривает просвет повреждённого сосуда и останавливает кровотечение.
Кровь поддерживает кислотно-щелочной и водный баланс организма. В норме рН крови составляет 7,36-7,4. Сохранение постоянства рН является важнейшей задачей, так как в кровь выделяется большое количество кислых (например, лактат, кетоновые тела, угольная кислота), а также основных (аммиак) продуктов метаболизма. Регуляцию рН осуществляют буферные системы крови, которые подробно рассмотрены в курсе физиологии.
Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях.
Химический состав растворимых в плазме крови веществ относительно постоянен, так как существуют мощные нервные и гуморальные механизмы, поддерживающие гомеостаз (постоянство внутренней среды). Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Диапазон концентраций разных веществ плазмы крови у здорового человека представлен в специальных биохимических справочниках и является важнейшим материалом для медицинской биохимии.
Кровь связана со всеми тканями организма, поэтому возникновение патологического процесса в каком-либо органе приводит к изменению биохимических показателей крови. Эта информация может быть ценной при постановке диагноза и оценке эффективности лечебных мероприятий.
Белки плазмы крови:
Белковую фракцию плазмы составляет несколько десятков различных белков. Большая величина молекул дает основание относить их к коллоидам. Присутствие коллоидов в плазме обусловливает ее вязкость.
Белки плазмы различают по строению и функциональным свойствам. Их количественное и качественное определение производят специальными методами электрофореза, основанного на различной подвижности белков в электрическом поле, ультрацентрифугирования, иммуноэлектрофореза, при котором в электрическом поле передвигаются целые комплексы связанных со специфическими антителами молекул. В плазме крови человека содержится примерно 200—300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген.
Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Известно, что, например, одна молекула альбумина может одновременно связать 25—50 молекул билирубина.
Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций: α1—, α2—, β3— и γ—глобулины. С помощью иммуноэлектрофореза эти фракции подразделяют на мелкие субфракции более однородных белков. Так, во фракции α1—глобулинов имеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа — мукопротеины — содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, в котором на каждую белковую молекулу приходится восемь атомов меди. Таким образом связывается около 90% всей содержащейся в плазме меди. В плазме имеются еще тироксинсвязывающий и другие белки.
β—глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Они удерживают в растворе около 75% всех липидов плазмы. Металлсодержащий белоктрансферрин осуществляет перенос железа кровью. Каждая молекула трансферрина несет два атома железа.
γ—глобулины характеризуются самой низкой электрофоретической подвижностью. В эту фракцию белков входят различные антитела, защищающие организм от вторжения вирусов и бактерий. Количество этой фракции возрастает при иммунизации животных. К γ—глобулинам относятся также агглютинины крови.
Фибриноген занимает промежуточное положение между фракциями β— и γ—глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством становиться нерастворимым в определенных условиях (под воздействием тромбина), принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Сыворотка крови по своему составу отличается от плазмы только отсутствием фибриногена.
Альбумины и фибриноген образуются в печени, глобулины  в печени красном костном мозгу, селезенке, лимфатических узлах. При нормальном питании в организме человека за 1 сут вырабатывается около 17 г альбумина и
5 г глобулина. Период полураспада альбумина составляет 10—15 сут глобулина — 5 сут.
Белки плазмы вместе с электролитами являются ее функциональными элементами. С их помощью в значительной степени осуществляется транспорт веществ из крови к тканям. К числу транспортируемых компонентов относятся питательные вещества, витамины, микроэлементы, гормоны, ферменты а также конечные продукты обмена веществ.   
Из питательных веществ самую большую часть составляют липиды. Их концентрация колеблется в широком диапазоне, но максимальное содержание отмечается после приема жирной пищи. На относительно постоянном уровне удерживаются переносимая плазмой глюкоза (44,4—66,6 ммоль/л) и аминокислотные  остатки (4 мг%). Витамины могут переноситься либо в связанному белками, либо в свободном виде. Их уровень в плазме также подвержен колебаниям и зависит не только от их содержания в продуктах питания и синтеза кишечной флорой, но и от наличия особого фактора, облегчающего их всасывание в кишке.
Микроэлементы циркулируют в плазме в виде металлсодержащих белков (Со и др.) или белковых комплексов (Fe). Из конечных продуктов обмена наибольшей концентрации, особенно при тяжелой мышечной работе и недостатке кислорода, достигает молочная кислота. Не использованные организмом и подлежащие удалению конечные продукты обмена веществ (мочевина, мочевая кислота, билирубин, аммиак) доставляются плазмой к почкам, где и удаляются с мочой.
Белки плазмы в силу способности связывать большое число циркулирующих в плазме низкомолекулярных соединений участвуют, кроме того, в поддержании постоянства осмотического давления. Им принадлежит ведущая роль в таких процессах, как образование тканевой жидкости, лимфы, мочи, всасывание воды.
49 Роль ферментов: щелочной и кислой фосфатазы в минеральном обмене тканей зуба.
43 Биохимия печени. Роль печени в обмене углеводов, липидов и белков. Детоксикационная функция печени.
Печень самый крупный из паренхиматозных органов. Она выполняет ряд ключевых функций.
1)      Принимает и распределяет вещества, поступающие в организм из пищеварительного тракта, которые приносятся с кровью по воротной вене. Эти вещества проникают в гепатоциты, подвергаются химическим превращениям и в виде промежуточных или конечных метаболитов поступают в кровь и разносятся в другие органы и ткани.
2)      Служит местом образования желчи.
3)      Синтезирует вещества, которые используются в других тканях.
4)Инактивирует экзогенные и эндогенные токсические вещества, а также гормоны.
Роль печени в метаболизме углеводов
Печень играет ведущую роль в поддержании физиологической концентрации глюкозы в крови. Из общего количества поступающей из кишечника глюкозы печень извлекает ее большую часть и тратит: 10-15 % от этого количества на синтез гликогена, 60 % на окислительный распад, 30 % на синтез жирных кислот.
В печени активно протекает глюконеогенез, при котором предшественниками глюкозы являются пируват и аланин (поступающий из мышц), глицерол - из жировой ткани и с пищей ряд глюкогенных АК. Избыточное поступление глюкозы с пищей увеличивает в гепатоците интенсивность всех путей ее превращения. Так активируется ее окисление с образованием большого количества пирувата.  Для его дальнейшего окисления необходимо также большое количество КоА, который также используется и для окисления жирных кислот. В результате окисление жирных кислот и распад липидов в жировых депо замедляется.
Метаболизм липидов
В печени синтезируются желчные кислоты, при дефиците которых переваривания жиров практически не происходит. В регуляции метаболизма липидов печени принадлежит ведущая роль. Так, при дефиците основного энергетического материала - глюкозы, в печени активируется окисление жирных кислот. В условиях избытка глюкозы в гепатоцитах происходит синтез триглицеридов и фосфолипидов из жирных кислот, которые поступают в печень из кишечника.
Печени принадлежит ведущая роль в регуляции обмена холестерола. Исходное вещество в его синтезе - ацетил-КоА. Т. е. Избыточное питание стимулирует образование холестерола. В печени синтезируются транспортные формы липопротеинов. В печени, кроме того, синтезируются кетоновые тела, в частности ацетоацетат и гидрооксимаслянная кислота, которые разносятся кровью по организму. Сердечная мышца и корковый слой надпочечников предпочитают в качестве источника энергии использовать именно эти соединения, а не глюкозу.
Метаболизм белков
Печень использует АК, поступающие из пищеварительного тракта для синтеза собственных белков, но большая их часть идет на синтез белков плазмы крови. В печени синтезируются фибриноген, альбумины, - и -глобулины и липопротеиды. В печени синтезируется также т.н. лабильный резервный белок, который является как бы запасом АК, которые затем могут использоваться различными органами и тканями по мере необходимости. Печень занимает центральное место в обмене АК, т.к. в ней активно протекают процессы их химической модификации. Кроме того, именно в печени происходит синтез мочевины.
Детоксицирующая функция печени
Детоксикация ядовитых метаболитов и чужеродных соединений (ксенобиотиков) протекает в гепатоцитах в две стадии. Реакции первой стадии катализируются монооксигеназной системой, компоненты которой встроены  в мембраны эндоплазматическогоретикулума. Реакции окисления, восстановления или гидролиза являются первой стадией  в системе выведения из организма гидрофобных молекул. Они превращают вещества в полярные водорастворимые метаболиты.
Основной фермент гемопротеид цитохромы Р-450.Важным свойством цх Р-450 является способность к индукции под действием экзогенных субстратов, что легло в основу классификации изоформ в зависимости от индуцируемости тем или веществом определенной химической структуры.На первой стадии биотрансформации происходит образование или высвобождение гидрокси-, карбоксильных, тиоловых и аминогрупп, которые являются гидрофильными, и молекула может подвергаться дальнейшему превращению и выведению из организма. В качестве кофермента используется НАДФН. Кроме цх Р-450, в первой стадии биотрансформации принимают участие цхb5 и цитохромредуктаза.44 Роль почек в регуляции водно-солевого обмена организма. Ренин-ангиотензиновая система. Структура и механизм действия вазопрессина и альдостерона.
Механизм действиявазопресина
Для АДГ существуют 2 типа рецепторов: V1 и V2. Рецепторы V2, опосредующие главный физиологический эффект гормона, обнаружены на базолатеральной мембране клеток собирательных трубочек и дистальных канальцев - наиболее важных клеток-мишеней для АДГ, которые относительно непроницаемы для молекул воды. В отсутствие АДГ моча не концентрируется и может выделяться в количествах, превышающих 20 л в сутки (норма 1,0-1,5 л в сутки). Связывание АДГ с V2(рис. 11-32) стимулирует аденилатциклазную систему и активацию протеинкиназы А. В свою очередь, протеинкиназа А фосфорилирует белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2. Аквапорин-2 перемещается к апикальной мембране собирательных канальцев и встраивается в неё, образуя водные каналы. Это обеспечивает избирательную проницаемость мембраны клеток для воды, которые свободно диффундируют в клетки почечных канальцев и затем поступают в интерстициальное пространство. Поскольку в результате происходит реабсорбция воды из почечных канальцев и экскреция малого объёма высококонцентрированной мочи (антидиурез), гормон называют антидиуретическим гормоном.
Рецепторы типа V1 локализованы в мембранах ГМК сосудов. Взаимодействие АДГ с рецептором V1 приводит к активации фосфолипазы С, которая гидролизует фосфатидилинозитол-4,5-бисфосфат с образованием инозитолтрифосфата и диацилглицерола. Инозитолтрифосфат вызывает высвобождение Са2+ из ЭР. Результатом действия гормона через рецепторы V1 является сокращение гладкомышечного слоя сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях гормона. Поскольку сродство АДГ к рецептору V2 выше, чем к рецептору V1, при физиологической концентрации гормона в основном проявляется его антидиуретическое действие.
Альдостерон - наиболее активный минера-локортикостероид, синтезирующийся в коре надпочечников из холестерола.
Механизм действия альдостерона В клетках-мишенях гормон взаимодействует с рецепторами, которые могут быть локализованы как в ядре, так и в цитозоле клетки. Образовавшийся комплекс гормон-рецептор взаимодействует с определённым участком ДНК и изменяет скорость транскрипции специфических генов. Результат действия альдостерона - индукция синтеза: а) белков-транспортёров Na+ из просвета канальца в эпителиальную клетку почечного канальца; б) Nа+,К+,-АТФ-азы, обеспечивающей удаление ионов натрия из клетки почечного канальца в межклеточное пространство и переносящей ионы калия из межклеточного пространства в клетку почечного канальца; в) белков-транспортёров ионов калия из клеток почечного канальца в первичную мочу; г) митохондриальныхферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов Суммарным биологическим эффектом индуцируемых альдостероном белков является увеличение реабсорбции ионов натрия в канальцах нефронов, что вызывает задержку NaCl в организме, и возрастание экскреции калия.  Роль системы ренин-ангиотензин-альдостерон в регуляции водно-солевого обмена Главным механизмом регуляции синтеза и секреции альдостерона служит система ренинангиотензин.
Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль конечной части афферентных (приносящих) артериол, входящих в почечные клубочки. Юкстагломерулярные клетки особенно чувствительны к снижению перфузионного давления в почках. Уменьшение АД (кровотечение, потеря жидкости, снижение концентрации NaCl) сопровождается падением перфузионного давления в приносящих артериолах клубочка и соответствующей стимуляцией высвобождения ренина. Субстратом для ренина служит ангиотензиноген. Ангиотензиноген - α2-глобулин, содержащий более чем 400 аминокислотных остатков. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена и отщепляет N-концевой декапептид (ангиотензин I), не имеющий биологической активности. Под действием карбоксидипептидилпептидазы, или антиотензин-превращающего фермента (АПФ), выявленного в эндотелиальных клетках, лёгких и плазме крови, с С-конца ангиотензина I удаляются 2 аминокислоты и образуется октапептид - ангиотензин II.
Ангиотензин II, связываясь со специфическими рецепторами, локализованными на поверхности клеток клубочковой зоны коры надпочечников и ГМК, вызывает изменение внутриклеточной концентрации диацилглицерола и инозитолтрифосфата. Инозитолтрифосфат стимулирует высвобождение из ЭР ионов кальция, совместно с которым активирует протеинкиназу С, опосредуя тем самым специфический биологический ответ клетки на действие ангиотензина П.
При участии аминопептидазангиотензин II превращается в ангиотензин III - гептапептид, проявляющий активность ангиотензина II. Однако концентрация гептапептида в плазме крови в 4 раза меньше концентрации октапептида, и поэтому большинство эффектов являются результатом действия ангиотензина П. Дальнейшее расщепление ангиотензина II и ангиотензина III протекает при участии специфических протеаз (ангиотензиназ).
Ангиотензин II оказывает стимулирующее действие на продукцию и секрецию альдостерона клетками клубочковой зоны коры надпочечников, который, в свою очередь, вызывает задержку ионов натрия и воды, в результате чего объём жидкости в организме восстанавливается. Кроме этого, ангиотензин II, присутствуя в крови в высоких концентрациях, оказывает мощное сосудосуживающее действие и тем самым повышает АД.
45 Белки мышц. Структура, свойства, роль. Источники энергии для мышечного сокращения. Биохимические механизмы сокращения и расслабления мышечного волокна.
В настоящее время белки мышечной ткани делят на три основные группы: саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых – 45% и третьих – 20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой. Белки, входящие в состав саркоплазмы, относятся к протеинам, растворимым в солевых средах с низкой ионной силой. Принятое ранее подразделение саркоплазматических белков на миоген, глобулин X, миоальбумин и белки-пигменты в значительной мере утратило смысл, поскольку существование глобулина X и миогена как индивидуальных белков в настоящее время отрицается. Установлено, что глобулин X представляет собой смесь различных белковых веществ со свойствами глобулинов. Термин «миоген» также является собирательным понятием. В частности, в состав белков группы миогена входит ряд протеинов, наделенных ферментативной активностью: например, ферменты гликолиза. К числу саркоплазмати-ческих белков относятся также дыхательный пигмент миоглобин и разнообразные белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы тканевого дыхания, окислительного фосфорилирования, а также многие стороны азотистого и липидного обмена. Недавно была открыта группа саркоплазматических белков – пар-вальбумины, которые способны связывать ионы Са2+. Их физиологическая роль остается еще неясной. К группе миофибриллярных белков относятся миозин, актин и актомио-зин – белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.
Сокращение.  Мышечное сокращение начинается с нервного импульса. Под воздействием ацетилхолина развивается возбуждение клеточной мембраны и резко повышается ее проницаемость для Са2+.Са2+ поступает в цитоплазму мышечной клетки (саркоплазма) из депо - цистерн цитоплазматического ретикулума. Концентрация Са2+ в саркоплазме мгновенно увеличивается в 100 раз (с 10-7М до 10-5М).  Кальций связывается с тропонином "С". Это приводит к конформационным изменениям молекулы тропонина, в результате устраняется пространственное препятствие в виде тропонина "I", в результате конформационных изменений тропонина "Т" молекула тропомиозина оттягивается в сторону и открывает на поверхности актина миозин-связывающие центры. Дальше мышечное сокращение идет по схеме.
Расслабление.Чтобы произошло расслабление мышцы, необходимы следующие условия. Освобождение тропонина "С" от Са2+ - для этого работает мембрано-связанный фермент Са2+-зависимая АТФаза. Этот фермент использует энергию гидролиза АТФ для переноса Са2+ обратно в цистерны против градиента их концентраций. Накоплению ионов кальция в цистернах помогает белок кальсеквестрин. Кальсеквестрин - связывает Са2+ в цистернах. Когда мышца готова к сокращению, концентрация Са2+ в цистернах велика.
Не только процесс сокращения, но и процесс расслабления нуждается в АТФ, потому что если нет АТФ, то не работает Са2+-зависимая АТФаза. В этих условиях кальций связан с тропонином "С" - вся система находится в активном состоянии, нет распада актомиозинового комплекса - мышца постоянно находится в состоянии сокращения. Такая ситуация наблюдается после смерти человека в состоянии "трупного окоченения".
Запасы АТФ в клетке значительны, но их хватает для обеспечения мышечной работы только в течение 0.1 секунды. Но в мышечной клетке идет очень быстрыйресинтез АТФ.
46 Особенности обмена веществ в мозговой ткани. Образование и роль биогенных аминов.
На долю головного мозга приходится 2—3% от массы тела. В то же время потребление кислорода головным мозгом в состоянии физического покоя достигает 20—25% от общего потребления его всем организмом, а у детейв возрасте до 4 лет мозг потребляет даже 50% кислорода, утилизируемого всем организмом.
О размерах потребления головным мозгом из крови различных веществ, в том числе кислорода, можно судить по артериовенозной разнице. Установлено, что во время прохождения через мозг кровь теряет около 8 об.% кислорода. В 1 мин на 100 г мозговой ткани приходится 53—54 мл крови. Следовательно, 100 г мозга потребляет в 1 мин 3,7 мл кислорода, а весь головной мозг (1500 г) — 55,5 мл кислорода.
Газообмен мозга значительно выше, чем газообмен других тканей, в частности он превышает газообмен мышечной ткани почти в 20 раз. Интенсивность дыхания для различных областей головного мозга неодинакова. Например, интенсивность дыхания белого вещества в 2 раза ниже, чем серого (правда, в белом веществе меньше клеток). Особенно интенсивно расходуют кислород клетки коры мозга и мозжечка.
Поглощение кислорода головным мозгом значительно меньше при наркозе. Напротив, интенсивность дыхания мозга возрастает при увеличении функциональной активности.
Из биогенных аминов к медиаторам воспаления относят гистамин, серотонин, адреналин и норадреналин. Гистамин Основными источниками гистамина являются базофилы и тучные клетки. Действие гистамина опосредуют Н1 и Н2-рецепторы на клетках-мишенях. H1-рецепторы активируют малые дозы гистамина. Эффекты их активации: ощущения боли, жжения, зуда, напряжения. Н2-рецепторы активируются гистамином в высокой концентрации. Эффекты их возбуждения: изменения синтеза Пг, потенцирование образования циклических нуклеотидов, повышение проницаемости стенок сосудов микроциркуляторного русла (особенно венул), активация миграции макрофагов, нейтрофилов, эозинофилов в очаг воспаления, сокращение ГМК. Промежуточные дозы гистамина активируют оба вида рецепторов. Это сопровождается значительным расширением артериол и развитием в очаге воспаления артериальной гиперемии, снижением порога возбудимости и повышением чувствительности тканей, в том числе болевой.
Серотонин Источниками серотонина являются тромбоциты, тучные клетки, нейроны, энтероэндокринные клетки. В очаге воспаления серотонин повышает проницаемость стенок микрососудов, активирует сокращение ГМК венул (что способствует развитию венозной гиперемии), приводит к формированию чувства боли, активирует процессы тромбообразования. Адреналин и норадреналин Эффекты норадреналина в очаге воспаления являются в основном результатом его действия на клетки как нейромедиатора симпатической нервной системы (его прямые метаболические эффекты — в отличие от адреналина — сравнительно мало выражены). Из нейромедиаторов при развитии воспалении важную роль выполняют катехоловые амины и ацетилхолин. Адреналин. Норадреналин. Норадреналин и адреналин синтезируются из тирозина в нейронах головного мозга, симпатической нервной системы, а также в хромаффинных клетках параганглиев и мозгового вещества надпочечников. Эффекты адреналина и норадреналина реализуются через а- и/или Р-адренорецепторы. • Источники в очаге воспаления норадреналина и адреналина - Норадреналин выделяется из окончаний нейронов симпатической нервной системы. - Катехоламины надпочечникового происхождения поступают к тканям (в том числе в очаге воспаления) с кровью. • Эффекты норадреналина и адреналина - Активация гликолиза, липолиза, липопероксидации. - Увеличение транспорта Са2+ в клетки. - Сокращение ГМК стенок артериол, уменьшение просвета артериол и развитие ишемии. - Регуляция эмиграции лейкоцитов из сосудов в ткань и течения фагоцитарной реакции.
47 Биохимический состав зуба. Характеристика биохимических компонентов: белки, липиды, углеводы.
К таким тканям относятся эмаль, дентин, цемент зуба.
эмаль – эптодермального происхождения, а кость, цемент,
дентин – мезентимального происхождения, но , несмотря на это, все эти ткани имеют много общего, состоят из межклеточного вещества или матрицы, имеющего углеводно-белковую природу и большое количество минеральных веществ, в основном, представленных кристаллами апатитов.
 Степень минерализации:
 Эмаль –> дентин –> цемент –> кость.
 В этих тканях следующее процентное содержание:
Минеральные вещества: Эмаль-95%; Дентин-70%; Цемент-50%; Кость-45%
Органические вещества: Эмаль-1 – 1,5%; Дентин-20%; Цемент-27%; Кость-30% 
Вода: Эмаль-30%; Дентин-4%; Цемент-13%; Кость-25%.
Белки и углеводы входят в состав органич.матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.
1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидо- подобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст.белого или пигментированного пятна кол-во этих белков > в  4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.
2. Б.растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер.компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.
3. Своб.пептиды и отд.аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1%
1) ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации
2) белки инициируют минерализацию. Активно участвуют в этом процессе
3) обеспечивают минер.обмен в эмали и др.твердых тканях зуба.
Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.
Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.
Белковый матрикс дентина -  20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин нормального происхождения, содержит глюкозаминогликогены, галактозу, гексазамиты и гелиуроновые кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец.белкамотн-сяамелогенины,
энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен замедленный обмен мин.компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса.
48 Характеристика минерального матрикса и минерального обмена зуба.
Характеристика минерального матрикса зуба.
Минеральную основу тканей зуба составляют кристаллы разных апатитов.
Основным является гидроксиапатит Ca10 (PO4) 6 (OH) 2 и восьмикальциевий фосфат
Ca8H2 (PO4) 6 • 5H2O.
Состав апатитов тканей зуба.
Апатит (название) Формула
Гидроксиапатит Ca10 (PO4) 6 (OH) 2
Восьмикальциевий фосфат Ca8H2 (PO4) 6 • 5H2O
Карбонатный апатит Ca10 (PO4) 6CO3 или Ca10 (PO4) 5CO3 (OH) 2
Хлорный апатит Ca10 (PO4) 6Cl
Стронциевый апатит SrCa9 (PO4) 6 (OH) 2
Фторапатит Ca10 (PO4) 6F2
. Отдельные виды апатита различаются по химическим и физическим свойствами - прочностью , способностью растворяться ( разрушаться ) под действием
органических кислот , а их соотношение в тканях зуба обусловливается характером питания , обеспеченностью организма микроэлементами и прочее.
Химические и физические свойства апатитов существенно изменяются при включении в их состав таких элементов как Sr2 + и F2. В частности стронций активно конкурирует с кальцием за место связывания в кристаллической решетке
гидроксиапатита . Хотя Ca2 + и Sr2 + имеют сходные химические свойства , замена кальция на стронций изменяет архитектонику гидроксиапатита . стронциевый апатит менее устойчивым и легче разрушается под действием органических кислот, ведет к повышению ломкости зуба. Повышенное содержание стронция в пищевых продуктах способствует увеличению содержания стронциевого апатита и повышает
степень риска развития кариеса . Особенно опасно поступление в организм радиоактивного стронция , который , включаюсь в структуру апатита, может вызвать локальное лучевое поражение тканей. Стронций можно вытеснить из состава апатитов большим количеством кальция. Установлено , что пятикратное увеличение кальция в диете ведет к
уменьшение включения стронция на 50 %. Поэтому в случаях попадания радиоактивного стронция в организм целесообразно употреблять диету , обогащенную
кальцием.
Карбонатный апатит , как и стронциевый , имеет более высокую растворимость в кислой среде по сравнению с гидроксиапатитом . Посиленому12
образованию карбонатного апатита способствуют углеводороды пищевые продукты ,особенно при их длительном пребывании в ротовой полости . Кроме того , с углеводных продуктов образуется большое количество органических кислот , под
действием этих кислот карбонатный апатит легко разрушается.
Среди всех апатитов наивысшую устойчивость имеет фторапатит . образование
фторапатита повышает прочность эмали , снижает ее проницаемость и повышает
резистентность к кариесогенных факторов. Фторапатит в 10 раз хуже растворяется в кислотах , чем гидроксиапатит . При достаточной обеспеченности фтора резко ( в 4 раза) снижается количество случаев заболевания кариеса .
Процессы минерализации - деминерализиции - основа
минерального обмена тканей зуба.
Основу минерального обмена тканей зуба составляют три
взаимообусловленных процессы , постоянно протекающие в тканях зуба :
минерализация , деминерализация и реминерализация .
Минерализация тканей зуба - это процесс образования органического основания , прежде всего коллагена , и насыщение ее солями кальция. минерализация является
особенно интенсивной в период прорезывания зубов и формирования твердых тканей зуба. Зуб прорезывается с неминерализованою эмалью.различают две основные стадии минерализации.
Первая стадия - образование органической , белковой матрицы . ведущую роль на этой стадии играет пульпа . В клетках пульпы одонтобластах и фибробластах синтезируются и высвобождаются в межклеточный матрикс фибриллы коллагена ,неколлагеновые белки - протеогликаны ( остеокальцин ) и гликозаминогликаны . Коллаген , протеогликаны и гликозаминогликаны формируют
поверхность , на которой будет происходить формирование кристаллической решетки . В цьму процессе протеогликаны играют роль пластификаторов коллагена , то есть повышают его способность к набуханию и увеличивают общую поверхность . Под действием лизосомальных ферментов , высвобождающихся в матрикс, гетерополисахаридыпротеогликанов расщепляются с образованием высокореактивных анионов , которые способны связывать ионы Са2 + и другие катионы .
Вторая стадия - кальцификация , откладывание апатитов на матрице . Ориентированный рост кристаллов начинается в точках кристаллизации или в
точкахнуклеации - участках с высокой концентрацией ионов кальция и фосфатов. Локально высокая концентрация этих ионов обеспечивается способностью
всех компонентов органической матрицы связывать кальций и фосфаты. В частности : в коллагене гидроксигруппы остатков серина ,треонина , тирозина , гидроксипролина и гидроксилизин связывают фосфат ионы ; свободные
карбоксильные группы остатков дикарбоновых кислот в коллагене , протеогликанов и гликопротеинов связывают ионы Са2 + ; остатки γ - карбоксиглутаминовои кислоты кальций связывающего белка – остеокальцина ( кальпротеину ) связывают ионы Са2 + ( остеокальцин - белок с М.М. 6.500 Да
содержит 4 остатка γ - карбоксиглутаминовои кислоты). Иони13 кальция и фосфата концентрируются вокруг ядер кристаллизации и образуют первые микрокристаллы. Существуют две теории инициации процесса минерализации тканей зуба.согласно первой - процесс кристаллизации начинается присоединением фосфат - аниона в
гидроксильных групп серина и гидроксилизин в молекуле коллагена.далее к фосфат аниона присоединяется Са2 +
Согласно второй теории инициатором процесса минерализации является связывания Са2 +
с остатками γ - карбоксиглутаминовои кислоты в молекулах
остекальцину γ - карбоксиглутаминова кислота
Скорее всего , эти два процесса дополняют один другой , что делает инициацию кристаллизации быстрым и эффективным процессом .Оптимальное для минерализации соотношение Са2 + / Р в слюне составляет
1,67 . Такие элементы как Mg2 + , Mn2 + , Zn2 + , Cu +
, Кремний ( Si2 +) усиливают
процесс минерализации. Селен - наоборот замедляет минерализацию тканей зуба.
Деминерализация физиологически обратным процессом , который в норме. уравновешивается минерализацией .
Реминерализация - включает два важных процесса: 1) процесс
восстановление поврежденных участков зуба; 2) ионное замещение гидроксиапатита взависимости от характера питания и состояния обменных процессов в тканях зуба. В частности избыточное поступление фтора и стронция будет вести к замены гидроксиапатита на фторапатит и стронциевый апатит, поскольку гидроксильные группы апатита замещаются на F, а кальций замещается на
стронций.
49 Роль ферментов: щелочной и кислой фосфатазы в минеральном обмене тканей зуба.
Фосфатазы, ферменты класса гидролаз, катализирующие гидролиз сложных эфиров фосфорной кислоты в организме животных, растений и в микроорганизмах.
Функция фосфатазы – поддержание уровня фосфата, необходимого для различных биохимических процессов, и, возможно, транспорт фосфата в клетку. В зависимости от химической природы расщепляемого субстрата различают монофосфатазы, гидролизующие моноэфиры фосфорной кислоты, и дифосфатазы, расщепляющие диэфиры фосфорной кислоты.
Фосфатазы играют важную роль в течении физиологических процессов тканей полости рта. В зависимости от того, при каком pH фосфатаза активна, различают щелочную фосфатазу с оптимумом действия при pH 9,2-9,6 и кислую фосфатазу с оптимумом действия при pH 3,4-6,2 Таким образом, проведенные нами исследования выявили разнонаправленную активность щелочной и кислой фосфатаз при начальных поражениях пародонта. Указанная активность щелочной фосфатазы, в свою очередь, в известной степени может обусловить высокую интенсивность минерализации поверхности эмали со снижением ее центростремительной проницаемости к слюне. В этом отношении еще раз подчеркиваем значение количественного соотношения щелочной и кислой фосфатаз, т.к. проявляя наибольшую активность в принципиально разных средах (щелочная фосфатаза проявляет максимальную активность при рН 8,4—9,4, а оптимум рН для кислой фосфатазы находится в интервале значений рН между 4,7 и 6,0), они тем самым могут сыграть весьма важное значение в процессах регулирования эмалевой проницаемости. Однако при интерпретации количественных показателей ферментативной активности слюнных фосфатаз могут быть разночтения, т.е. затруднения придания им конкретной значимости в сложной патогенетической цепи развития патологии пародонта: являются ли такие изменения фосфатаз в слюне результатом уже развившегося гингивита, или их количественные уровни влияют на структурно-функциональный статус поверхности эмали, и в результате этого – на пусковые механизмы развития болезни. С учетом этого, в дальнейших исследованиях обязательным образом нужно провести корреляционный анализ показателей ферментативной активности фосфатаз с другими структурно-функциональными характеристиками эмалевой поверхности и состояния тканей пародонта в целом.
50 Коллагеновые белки зуба. Особенности их строения. Роль кальцийсвязывающего белка в минерализации зуба.
Нерастворимые белки тканей зуба представлены преимущественно двумя белками – это коллаген и специфический белок эмали, который не растворяется в ЕДТА (етилендиамінотетраоцтовій кислоте) и Нсl (соляной кислоте). Благодаря чрезвычайно высокой стойкости, этот белок эмали исполняет роль скелета всей структуры эмали, образовывая каркас – “корону” на поверхности зуба.
Коллаген – особенности строения, роль в минерализации зуба. Коллаген является основным фібрилярним белком соединительной ткани и главным нерастворимым белком в тканях зуба. Его содержание составляет около трети всех белков организма. Больше всего коллагену в сухожилиях, связках, коже (выдублена кожа одежды – это практически 100% коллаген), хрящах, костной ткани и тканях зуба.
Коллаген имеет уникальную структуру, которая получила название коллагеновая спираль, – она является левозакрученной спиралью, которая существенно отличается от структуры -спіралі белков. На один виток коллагеновой спирали приходится 3 аминокислотных остатки (а не 3,6 - как в -спіралі), но шаг спирали является значительно больше (0,9 нм), чем в -спіралі (0,54 нм). То есть, первичная коллагеновая спираль является более вытянутой и менее закрученной. Такая структура предопределяется специфической аминокислотной последовательностью. Каждая третья аминокислота в цепи являются глицином (его содержание составляет 33-35%), 11% составляет содержание аланіну.
Наиболее характерным для коллагена является чрезвычайно высокое содержание пролина и гидроксипролина – 20-21%. Высокое содержание пролина и гидроксипролина – аминокислот, которые препятствуют (перерывают) образованию классической -спіралі, предоставляют цепи коллагена жесткую, выгнутую конформацию. Три спиральных полипептидных цепи плотно обвиваются один вокруг второго и образуют правозакручений шнур – структурную единицу, которая получила назву- тропоколлаген. Стержневидни молекулы тропоколлагена имеют длину 300 нм и диаметр 1,5 нм. Прочность соединения полипептидных цепей в структуре тропоколлагена предопределяется чрезвычайно большим количеством межцепных водородных связей между –С=О×××××H–N– группами и ковалентных связей необычного типа, которые образуются между двумя остатками лизина соседних цепей согласно реакции:
   Стержневидни молекулы тропоколлагена заключаются в микрофибриллы. Микрофибриллы формируют фибриллы, из которых образуются волокна и щепотки волокон коллагена. Структурной особенностью коллагенового волокна является то, что молекулы тропоколлагена, которые заключаются вдоль коллагеновой фибриллы в виде колагеновіх пучков, не связываются между собой в тяжі по принципу “председатель-хвост”. Между концом одной молекулы и началом следующей есть промежуток с периодом 64 нм. Считается, что промежутки играют важную роль в процессе минерализации, они являются первичными центрами откладывания минеральных соединений. Образованные первичные кристаллы становятся ядрами минерализации и откладывания гідроксиапатиту.
Структура коллагена обусловливает его чрезвычайную прочность на разрыв -  он практически не растягивается. Коллагеновый пучок діаметром 1 мм2способен выдерживать нагрузка – 100Н (10кг). Стальний провод такого же диаметра может выдержать нагрузку – 93 Н (ньютон)
51 Эмаль зуба. Особенности структуры. Белки эмали. Роль в минерализации.Пути поступления веществ в эмали зуба. Роль углеводов в деминерализации эмали. Особенности биохимического состава дентина. Изменения при патологии.
Зубная эмаль (или просто эмаль) — внешняя защитная оболочка верхней части зубов человека.
Эмаль является самой твёрдой тканью в организме человека, что объясняется высоким содержанием неорганических веществ — до 97 %. Воды в зубной эмали меньше, чем в остальных органах, 2—3 %. Твёрдость достигает 397,6 кг/мм² (250—800 поВиккерсу). Толщина слоя эмали отличается на различных участках коронковой части зуба и может достигать 2,0 мм, а у шейки зуба сходит на нет.
Правильный уход за зубной эмалью является одним из ключевых моментов личной гигиены человека.
Твёрдость зубной эмали определяется высоким содержанием в ней неорганических веществ (до 97 %), главным образом кристаллов апатитов: гидроксиапатита  — Ca10(PO4)6(OH)2 (до 75,04 %), карбонатапатита (12,06 %), хлорапатита (4,397 %), фторапатита (3,548 %), CaCO3 (2,668 %), MgCO3 (2,287 %) и др. Здоровая эмаль содержит 2-3 % свободной воды и 1-2 % органических веществ (белков, липидов, углеводов). Вода занимает свободное пространство в кристаллической решётке и органической основе, а также располагается между кристаллами.
Гидроксиапатиты очень восприимчивы к кислотам и начинают заметно разрушаться при pH < 4,5. (Слюна обладает pH от 5,6 до 7,6)
Основным структурным образованием эмали является эмалевая призма (диаметром 4-6 мкм), состоящая из кристаллов гидроксиапатита. Межпризменное вещество эмали состоит из таких же кристаллов, как и призма, но они отличаются ориентацией. Наружный слой эмали и внутренний у дентино-эмалевой границы не содержит призм (беспризменная эмаль). В этих слоях содержатся мелкие кристаллы и более крупные — пластинчатые.
Также в эмали имеются эмалевые пластинки (ламеллы) и пучки, представляющие недостаточно минерализованное межпризменное вещество. Они проходят через всю толщину эмали.
Следующий структурный элемент эмали — эмалевые веретёна — колбообразные утолщения отростков одонтобластов, проникающих через дентиноэмалевые соединения.
Располагаясь в ротовой полости, естественная среда в которой — щелочная, зубная эмаль также нуждается в поддержке щелочного баланса. После каждого приёма пищи, при расщеплении углеводов, под воздействием разнообразных бактерий, перерабатывающих остатки еды и выделяющие кислоты, щелочная среда нарушается. Кислота разъедает эмаль и приводит к кариесу, для ликвидации необратимых последствий которого необходима установка пломб.
Для предотвращения кариеса необходимо после каждого приёма пищи как минимум полоскать рот водой, а лучше специальным ополаскивателем для ротовой полости, чистить зубы или по крайней мере жевать жевательную резинку без сахара.
Кариесвосприимчивость или резистентность зубной поверхности зависит от следующих факторов.
Свойство анатомической поверхности зуба: в естественных фиссурах и в промежутках между зубами есть благоприятные условия для долговременной фиксации зубного налёта. Насыщенность эмали зуба фтором: образовавшиеся в результате этого фторапатиты более устойчивы к действию кислот. Гигиена полости рта: своевременное удаление зубного налёта предотвращает дальнейшее развитие кариеса. Фактор диеты: мягкая, богатая углеводами пища способствует образованию зубного налёта. Количество витаминов и микроэлементов также влияет на общее состояние организма и особенно слюны.
Качество и количество слюны: Малое количество вязкой слюны способствует прикреплению бактерий к «пелликуле» и образовании зубного налёта (см. Зубная бляшка). Очень важное влияние на кариесрезистентность эмали имеют буферные свойства слюны (которые нейтрализуют кислоты) и количествоиммуноглобулинов и других факторов защиты в слюне (см. Слюна).
Генетический фактор. Общее состояние организма.
52 Особенности биохимического состава и биохимическая роль пульпы.
Пульпа (лат. pulpis dentis) — рыхлая волокнистая соединительная ткань, заполняющая полость зуба(лат. cavitas dentis), с большим количеством кровеносных и лимфатических сосудов, нервов.
По периферии пульпы располагаются в несколько слоев одонтобласты, отростки которых находятся в дентинных канальцах на протяжении всей толщи дентина, осуществляя трофическую функцию. В состав отростков одонтобластов входят нервные образования, проводящие болевые ощущения при механическом, физическом и химическом воздействий на дентин.
Кровообращение и иннервация пульпы осущес твляются благодаря зубным артериолам и венулам, нервным ветвям соответствующих артерий и нервов челюстей. Проникая в зубную полость через апикальное отверстиеканала корня зуба, сосудисто-нервный пучок распадается на более мелкие ветви капилляров и нервов.
Пульпа способствует стимуляции регенеративных процессов, которые проявляются в образованиизаместительного дентина при кариозном процессе. Кроме того, пульпа является биологическим барьером, препятствующим проникновению микроорганизмов из кариозной полости через канал корня за пределы зуба в периодонт.
Нервные образования пульпы осуществляют регуляцию питания зуба, а также восприятия зубом различных раздражений, в том числе и болевых. Узкое апикальное отверстие и обилие сосудов и нервных образований способствует быстрому увеличению воспалительного отека при остром пульпите и сдавливанию отеком нервных образований, что обусловливает сильную боль.
Морфологические особенности пульпы зуба связаны с ее функциями:
Пластическая функция осуществляется за счет деятельности одонтобластов, которые, образуя периферический слой пульпы, участвуют в образовании дентина. До прорезывания зуба образуется первичный дентин, после прорезывания гистологически идентичный первичному - вторичный дентин. В результате постоянного отложения вторичного дентина постепенно происходит уменьшение объема полости зуба.
Защитная функция осуществляется за счет деятельности:
макрофагов, которые обеспечивают утилизацию погибших клеток и фагоцитоз микроорганизмов, а также участвуют в развитии иммунных реакций;
лимфоцитов и их разновидности - плазматических клеток, которые активно синтезируют иммуноглобулины IgG и обеспечивают реакции гуморального иммунитета;
фибробластов, которые участвуют в выработке и поддержании необходимого состава межклеточного вещества пульпы, посредством которого происходят все обменные процессы.
К защитной функции также относят процесс образования третичного дентина.
Трофическая функция осуществляется за счет хорошо развитой сосудистой системы, которая имеет ряд особенностей: очень тонкостенные сосуды; скорость потока в пульпе выше, чем в других тканях; внутрипульпарное давление значительно выше, чем в других органах; в промежуточном слое большое количество "спавшихся" капилляров, которые начинают функционировать при воспалении; наличие артериоловенулярных анастомозов обеспечивает возможность прямого шунтирования кровотока, который проявляется в периодическом сбросе крови из артериального русла в венозное (без участия капилляров), при повышении внутрипульпарного давления, вызванного воспалением пульпы. Сенсорная функция осуществляется за счет деятельности большого количества нервных волокон, которые входят в полость зуба через апикальное отверстие и веерообразно расходятся к периферии коронковой части пульпы.
53 Гингивальная (десневая) жидкость, ее состав, биологическая роль.
Десневая жидкость является физиологической средой организма сложного состава, включающей в себя лейкоциты, спущенные эпителиальные клетки, микро¬организмы, электролиты, белковые компоненты и ферменты.
1. Лейкоциты.
Наличие лейкоцитов в десневой борозде имеет большое значение в физиоло¬гии полости рта, так как десневая борозда является основным источником поступ¬ления лейкоцитов в слюну.
Эмиграция лейкоцитов в полость рта имеет возрастной характер, так, у де¬тей до прорезывания зубов лейкоциты в слюне практически отсутствуют. Они по¬являются с началом прорезывания зубов и с прорезыванием всех зубов эмиграция достигает уровня эмиграции лейкоцитов взрослых. В более позднем возрасте с умень¬шением числа зубов количество лейкоцитов в слюне уменьшается. У стариков с беззубой челюстью эмиграция лейкоцитов значительно снижена.
При интактном пародонте у взрослых в десневой жидкости содержится 95-97% нейтрофилов, 1-2% лимфоцитов. 2-3% моноцитов. Среди мононуклеарных лей¬коцитов 24% приходиться на Т-лимфоциты и 58% - на В-лим4юциты. При воспале¬нии процентное соотношение нейтрофилов. лимфоцитов и моноцитов остается без изменений, но увеличивается абсолютное число этих клеток.
Увеличение числа лейкоцитов в десневой жидкости и слюне находиться в прямой зависимости от степени выраженности воспалительной реакции в тканях пародонта. Число эмигрировавших в полость рта лейкоцитов при хроническом воспалении в тканях пародонта увеличивается в 2 раза. а при обострении процесса в 4 раза по сравнению со здоровыми людьми. Ухудшение гигиены полости рта так¬же способствует увеличению количества лейкоцитов.
Большое значение лейкоцитам десневой жидкости придается как источнику лизосомальных ферментов (лизоцим, кислая и щелочная фосфотазы), которые име¬ют определенное значение в патогенезе заболеваний пародонта.
2. Эпителиальные клетки.
Десневая жидкость здоровых людей содержит спущенные эпителиальные клетки. При воспалении число спущенных эпителиальных клеток увеличивается, что связано с изменениями метаболизма межклеточного вещества и с увеличением митотической активности эпителия десны при воспалении. Спущенные эпители¬альные клетки могут адсорбироваться на поверхности зуба и способствовать на¬чальной колонизации бактерий при образовании зубного налета.
3. Микроорганизмы десневой жидкости.
Десневая жидкость в норме не стерильна. Постоянными представителями микрофлоры содержимого десневых борозд являются стрептококки и стафилокок¬ки, фузобактерии, спирохеты и простейшие. Однако при патологии пародонта уве¬личивается их количество, изменяется их видовой состав и повышается их патогенность.
При наличии воспаления в пародонте микроорганизмы, выделяемые из дес¬невой жидкости и зубного поддесневого налета схожи. Наличие кальция и фосфатов имеет значение для образования зубной бляшки.
4. Белковые компоненты десневой жидкости.
Белковый состав десневой жидкости и сыворотки крови одинаков. Содержа¬ние общего белка в десневой жидкости в среднем составляет 6.1 - 6.8 г/100 мл.
В десневой жидкости содержатся альбумины, глобулины, система комплемента. Существует мнение о том, что глобуллины и фибрин могут спо¬собствовать плотному соединению эпителия десны с эмалью, образуя клейкую плен¬ку и обеспечивая адгезию клеток зубо-эпителиального прикрепления к поверхнос¬ти чуба.
Десневая жидкость является важным источником ряда
иммуноглобулинов, антител для полости рта. Их концентрация в десневой жидкости и крови одинакова.
5. Ферменты.
Имеется тесная взаимосвязь между степенью нарастания воспалительных изменений в пародонте и уровнем активности лизоцима, гиалуроронидазы, эластазы, катепсинов, фосфотаз, лактатдегидрогеназ и других ферментов.
Ранние патохимическне изменения в метаболизме тканей пародопта при вос¬палении сводятся прежде всего к нарушениям в обмене коллагена, характеризую¬щимися ее убылью. Около 50% объема соединительной ткани десны и 90% орга¬нической фракции альвеолярной кости представлено коллагеном, который играет большую роль в поддержании структурных и функциональных свойств пародонта.
В физиологических условиях коллаген резистентен к действию протеолнтических ферментов тканевого и микробного происхождения. Основным ферментом, способным расщеплять нативный коллаген является коллагеназа. Интересен факт, что уровень коллагеназной активности при гингивите практически не отличается от уровня активности того фермента в ннтактных тканях пародонта. При пародонтите наблюдается высокая коллагенолитическая активность десневой жидко¬сти, когда как при пародонтозе она незначительна.
6. Количество десневой жидкости.
В течение суток в полость рта поступает от 0.5 до 2,4 мл десневой жидкости. По сравнению с ннтактным пародонтом, при хроническом катаральном гингивите количество десневой жидкости выше в 4.6 раза, пародонтите - 10.5 раза. Пародонтоз также характеризует¬ся более высокими количественными показателями десневой жидкости, которые превышают уровень ее выделения по сравнению с интактным пародонтом в 1.8 раза.
Предложено несколько способов получения десневой жидкости. Наиболее широкое распространение в клинике получил внутробороздковой метод забора десневой жидкости с помощью полосок фильтровальной бумаги. Количество десневой жидкости определяют путем взвешивания бумажных полосок или путем измерения плошади пропитывания.
54 Ферменты зубного налета, их значение в развитии кариеса.
В состав зубного налета входят: Белки - белки слюны, а также белки бактериальных и слущенных клеток эпителия; Ферменты - протеазы, гликозидазы, липазы и другие, в основном бактериального происхождения. Углеводы – глюкоза, гексозамины, полисахариды – декстран и леван и др. Липиды – липиды мембран клеток эпителия и бактериальной стенки – холестерин, триацилглицеролы и др. Могут образовывать комплексы с углеводами.
Формирование зубного налета Образование зубного налета начинается спустя один час после приема пищи: на приобретенную пелликулу зуба налипают бактерии. Примерно через 24 часа образуется незрелый (ранний) зубной налет, а через 72 часа формируется зрелый зубной налет. Полностью созревание зубного налета завершается на 3 - 7 сутки.
Белки приобретенной пелликулы зуба (ППЗ) наделены защитными свойствами Используя различные механизмы белки ППЗ губят микроорганизмы или препятствуют их прилипанию. Например: секреторный (из слюны) иммуноглобулин А (IgAs) предотвращает прилипание бактерий к поверхности эмали зубов.
55 Биохимические изменения в тканях зуба при патологии.
Кариесогенные факторы делятся на факторы общего и местного характера.
Общего характера:
относятся неполноценное питание: избыток углеводов, недостаток Са и Р, дефицит микроэлементов, витаминов, белков и др.
Болезни и сдвиги в функцион.состоянии органов и тканей.  Неблагоприятное воздействие в период прорезывания зубов и созревания и в первый год после прорезывания.
Электром.возд-ие (ионизирующая радиация, стрессы), которые действуют на слюнные железы, выделяемая слюна не соответствует нормальному составу, а она действует на зубы.
Местные факторв:
1) зубной налет  и бактерии
2) изменение состава и св-в смешанной слюны (сдвиг рн в кислую сторону, недостаток F, уменьшается количество и соотношение Са и Р и др.)
3) углеводная диета, углеводные пищевые остатки
Противокариесогенные факторы и кариесрезистентность зубов
1) восприимчивость к кариесу зависит от типа минерализации твердых тканей зуба. Желтая эмаль более кариесоустойчивая. С возрастом происходит уплотнение кристаллической решетки и кариесорезистентность зубов увелич.
2) Кариесорезистентности способствует замещение ГАП на фторапатиты – более прочные, более кислотоустойчивые и плохорастворимые. F – это противокариесогенный фактор
3) Кариесрезистентность поверхностного слоя эмали объясняется повышенным содержанием в ней микроэлементов: станум, Zn, Fe, Va, вольфрам и др., а  Se, Si, Cd, Mg – явл-ся кариесогенными
4) Кариесорезистентности зубов способствует вит.  D , C,  A, B и др.
5) Противокариесогенными св-вами обладают смешанная слюна, т.е. ее состав и свойства.
6) Особое значение придается лимонной кислоте, цитрату.
 F и стронций  F содержится во всех тканях организма. Находятся в нескольких формах:
1) кристалл. форма фторапатита: зубы, кости
2) в комплексе с органич. в-вами гликопротеидами. Образ-ся органический матрикс эмали, дентина, костей
3) 2/3 общего количества F нах-ся в ионном состоянии в биол.  жидкостях: кровь, слюна. Сниж.F в эмали и дентине связано с изменением в пит.Н О.
Легче F включ.в структуру эмали в слабокислой среде, кол-во F в костях увеличивается с возрастом, а в зубах детей обнаруживается в повышенных количествах, в период созревания твердых тканей зуба и сразу после прорезывания.
  При очень больших количествах F в организме возникает отравление фторсоединениями. Выражается в повыш-й хрупкости костей и их деформацией из-за нарушения Р-Са-го обмена. Как при рахите, но употребление вит.Д и А не вызывает существенного влияния на нарушение Р-Са обмена.
Большое количество F оказывает токсическое действие на весь организм, вследствие выраженного тормозящего влияния на процессы обмена углеводов, жиров, тканевого дыхания.
 Роль F Принимают участие в процессе минерализации зубов и костей. Прочность фторапатитов объясняется:
1) усил. связи между ионами Са в кристаллической решетке
2) F связывается с белками органического матрикса
3) F способствует образ-ю более прочных кристаллов ГАП и F-апатитов
4) F способствует активизации процесса преципитации апатитов смешанной слюны и тем самым повыш. ее реминерализующую функцию
5) F влияет на бактерии полости рта, сжигаются кислотообраз.св-ва и тем самым предотврацает сдвиг рн в кислую сторону, т.к. F ингибирует эколазу и подавляет кликолиз. На этом механизме основано противокариесное действие F.
6) F принимает участие в регуляции поступления Са в твердые ткани зуба, сниж.проницаемость эмали для других субстратов и повыш кариесорезистентность.
7) F стимулирует репаративные процессы при переломах костей.
8) F снижает сод-е радиоактивного стронция в костях и зубая и уменьш тяжесть Str рахита. Sr конкурирует с Са за включение в кристаллическую решетку ГАП, а  F подавляет эту конкуренцию.
56 Роль витаминов и гормонов в процессе минерализации и деминерализации тканей зуба.
Кариесогенные факторы делятся на факторы общего и местного характера.
Общего характера:
относятся неполноценное питание: избыток углеводов, недостаток Са и Р, дефицит микроэлементов, витаминов, белков и др.
Болезни и сдвиги в функцион.состоянии органов и тканей.  Неблагоприятное воздействие в период прорезывания зубов и созревания и в первый год после прорезывания.
Электром.возд-ие (ионизирующая радиация, стрессы), которые действуют на слюнные железы, выделяемая слюна не соответствует нормальному составу, а она действует на зубы.
Местные факторв:
1) зубной налет  и бактерии
2) изменение состава и св-в смешанной слюны (сдвиг рн в кислую сторону, недостаток F, уменьшается количество и соотношение Са и Р и др.)
3) углеводная диета, углеводные пищевые остатки
Противокариесогенные факторы и кариесрезистентность зубов
1) восприимчивость к кариесу зависит от типа минерализации твердых тканей зуба. Желтая эмаль более кариесоустойчивая. С возрастом происходит уплотнение кристаллической решетки и кариесорезистентность зубов увелич.
2) Кариесорезистентности способствует замещение ГАП на фторапатиты – более прочные, более кислотоустойчивые и плохорастворимые. F – это противокариесогенный фактор
3) Кариесрезистентность поверхностного слоя эмали объясняется повышенным содержанием в ней микроэлементов: станум, Zn, Fe, Va, вольфрам и др., а  Se, Si, Cd, Mg – явл-ся кариесогенными
4) Кариесорезистентности зубов способствует вит.  D , C,  A, B и др.
5) Противокариесогенными св-вами обладают смешанная слюна, т.е. ее состав и свойства.
6) Особое значение придается лимонной кислоте, цитрату.
 F и стронций  F содержится во всех тканях организма. Находятся в нескольких формах:
1) кристалл. форма фторапатита: зубы, кости
2) в комплексе с органич. в-вами гликопротеидами. Образ-ся органический матрикс эмали, дентина, костей
3) 2/3 общего количества F нах-ся в ионном состоянии в биол.  жидкостях: кровь, слюна. Сниж.F в эмали и дентине связано с изменением в пит.Н О.
Легче F включ.в структуру эмали в слабокислой среде, кол-во F в костях увеличивается с возрастом, а в зубах детей обнаруживается в повышенных количествах, в период созревания твердых тканей зуба и сразу после прорезывания.
  При очень больших количествах F в организме возникает отравление фторсоединениями. Выражается в повыш-й хрупкости костей и их деформацией из-за нарушения Р-Са-го обмена. Как при рахите, но употребление вит.Д и А не вызывает существенного влияния на нарушение Р-Са обмена.
Большое количество F оказывает токсическое действие на весь организм, вследствие выраженного тормозящего влияния на процессы обмена углеводов, жиров, тканевого дыхания.
 Роль F Принимают участие в процессе минерализации зубов и костей. Прочность фторапатитов объясняется:
1) усил. связи между ионами Са в кристаллической решетке
2) F связывается с белками органического матрикса
3) F способствует образ-ю более прочных кристаллов ГАП и F-апатитов
4) F способствует активизации процесса преципитации апатитов смешанной слюны и тем самым повыш. ее реминерализующую функцию
5) F влияет на бактерии полости рта, сжигаются кислотообраз.св-ва и тем самым предотврацает сдвиг рн в кислую сторону, т.к. F ингибирует эколазу и подавляет кликолиз. На этом механизме основано противокариесное действие F.
6) F принимает участие в регуляции поступления Са в твердые ткани зуба, сниж.проницаемость эмали для других субстратов и повыш кариесорезистентность.
7) F стимулирует репаративные процессы при переломах костей.
8) F снижает сод-е радиоактивного стронция в костях и зубая и уменьш тяжесть Str рахита. Sr конкурирует с Са за включение в кристаллическую решетку ГАП, а  F подавляет эту конкуренцию.
       
57 Основные функции ротовой жидкости, особенности ее биохимического состава. Факторы, влияющие на состав ротовой жидкости. рН ротовой жидкости.
Слюна обладает pH от 5,6 до 7,6. На 98,5 % и более состоит из воды, содержит соли различных кислот, микроэлементы и катионы некоторых щелочных металлов,муцин (формирует и склеивает пищевой комок), лизоцим (бактерицидный агент), ферменты амилазу и мальтазу, расщепляющие углеводы до олиго- и моносахаридов, а также другие ферменты, некоторые витамины. Также состав секрета слюнных желез меняется в зависимости от характера раздражителя.
Пищеварительная функция, в первую очередь, выражается в формировании и первичной обработке пищевого комка. Кроме того, пища в полости рта подвергается первичной ферментативной обработке, углеводы частично гидролизуются под действием L-амилазы до декстранов и мальтозы. Защитная функция. Осуществляется благодаря многообразным свойствам слюны. Увлажнение и покрытие слизистой оболочки слоем слизи (муцина) предохраняет ее от высыхания, образования трещин и воздействия механических раздражи гелей. Слюна омывает поверхность зубов и слизистую оболочку рта, удаляя микроорганизмы и продукты их метаболизма, остатки пищи, детриты. Важное значение при этом имеют бактерицидные свойства слюны, выраженные благодаря действию ферментов (лизоцим, липаза, РНКаза, ДНКаза, ппсонины, лейкины и др.). Свертывающая и фибринолитическая способность слюны поддерживается за счет содержащихся в ней тромбопластина, антигепариновой субстанции, протромбинов, активаторов и ингибиторов фибринолизина. Эти вещества обладают гемокоагулирующей и фибринолитической активностью, благодаря чему обеспечивается местный гомеостаз, улучшаются процессы регенерации поврежденной слизистой оболочки. Слюна, будучи буферным раствором, нейтрализует поступающие в полость рта кислоты и щелочи. И, наконец, нажную защитную роль играют иммуноглобулины, присутствующие в слюне. Минерализующее действие слюны. В основе этого процесса лежат механизмы, препятствующие выходу из эмали ее компонентов и способствующие их поступлению из слюны в эмаль.
Противокариозное действие слюны. Было установлено, что вскоре после поступления в полость рта твердой углеводистой пищи концентрация глюкозы в слюне снижается, причем вначале быстро, а затем медленно. Большое значение при этом играет скорость слюноотделения — усиление слюноотделения способствует более активному вымыванию углеводов. При этом не происходит выведения фторидов, так как они связываются с поверхностями твердых и мягких гканей полости рта, высвобождаясь в течение нескольких часов. Благодаря присутствию фторидов в слюне баланс между де- и реминерализацией смещается в сторону последней, что обеспечивает противокариозный эффект. Установлено, что этот механизм реализуется даже при относительно низких концентрациях фторидов в слюне. Влияние слюны на ускорение выведения глюкозы является не единственным механизмом снижения поражаемости кариесом. Более выраженное противокариозное действие обеспечивается ее способностью к нейтрализации кислот и щелочей, т. е. буферным эффектом, благодаря присутствию гидрокарбонатов натрия.
Роль слюны в минерализации и деминерализации тв.тк.зуба, растворимость ГАП
Минерализация – это процесс поступления в эмаль зуба необходимых элементов для образования кристаллов ГАП. Деминерализация  - противоспалительный процесс, связанный с растворением кристалла, разрушением эмали. Эти процессы могут находиться в химическом равновесии и обеспечивать постоянство состава зубов или же может преобладать какой-либо из этих процессов. Главным условием поддержания гомеостаза мин.обмена в зубах явл-ся перенасыщенность слюны ГАП-ом, при гидролизе которых образуется Са  и НРО  .
Перенасыщенность слюны – это св-во, характерное для всех биологических жидкостей, н-р: пота, спиномозговой жидкости и панкреатическго сока. Все остальные жидкости явл-ся или насыщенными или перенасыщенными ГАП.
Перенасыщенность слюны этими элементами обеспечивает:
1) диффузию Са и Р в эмали зуба
2) способность адсорбции этих ионов на поверхности эмали и активация ионного обмена гидратной оболочки кристалла
3) препятствует растворению эмали. Перенасыщенность слюны сохраняется при рн = 6,0 – 6,2. Это критическое значение рн.
58 Патология, вызываемая изменением рН ротовой жидкости:      
В более кислой среде слюна становится ненасыщенной, т.к. начинается процесс деминерализации эмали и > ее растворимость. При снижении рн от 6 до 5 степень насыщения ГАП снижается в 6,3 раза, а при > рн от 6 до 8 степень насыщения ГАП повышается почти в 100 раз. Активируются процессы минерализации тканей зуба, сниж-ся растворимость тк., образ-ся зубной камень.
Св-во растворимости эмали определяется константой произведения растворимости К(ПР). это величина характеризуется концентрацией и активностью катионов и анионов в слюне при контакте с ГАП. Она зависит от характера ионов  К(ПР) зависит от рн слюны. В кислой среде при рн = 4 в слюне будет усиленный гидролиз соли СаН РО х2Н О  ->  Са и Н РО  при рн = 6,0 – 6,2. К(ПР) определяется концентрацией ионов Са и НРО , поэтому соль будет гидролизоваться.
Са(НРО ) х Н О, кот.идут на образование кристаллов ГАП, т.е. преобладает процесс минерализации. Расворимость эмали будет снижаться. Значит, перенасыщенность эмали ГАП явл-ся защитным механизмом, уравновешивающим процессы минерализации и деминерализации, что обеспечивает постоянство состава и структуры минерализ.тканей.
59 Белки ротовой жидкости, их характеристика. Роль кальцийсвязывающего белка. Ферментный состав ротовой жидкости и ротовой полости. Диагностическое значение биохимического анализа ротовой жидкости.
Важнейшим компонентом слюны являются белковые соединения, значительную часть которых условно можно разделить по своим функциональным свойствам на три группы: участвующие в пищеварительных процессах, связанные с местным иммунитетом и выполняющие регуляторные функции.
Белки, участвующие в пищеварительных реакциях, представлены гидролитическими ферментами, основным из которых является α-амилаза (расщепляет α-1-4-глюкозидные связи гомополисахаридов до мальтозы и небольших олигосахаридов), которая может составлять до 10% всех белков слюны. Кроме амилазы в состав слюны входят такие пищеварительные ферменты как: мальтаза, гиалуронидаза, трипсиноподобные ферменты, пепсиноген, пептидазы, эстеразы, липазы, нуклеазы, пероксидазы, кислые и щелочные фосфатазы, лактопероксидаза и т.д. Показано, что часть этих ферментов секретируется слюнными железами (напр., амилаза и лактопероксидаза), ряд других поступает из крови (напр., пепсиноген) или имеют «смешанное» происхождение (напр., кислая и щелочная фосфатазы) и некоторые являются продуктами метаболизма лейкоцитов или микробов (напр., мальтаза, альдолаза)
Иммунные факторы слюны представлены в основном иммуноглобулином А и в меньшей степени IgG, IgM  и IgE. Неспецифическими защитными свойствами обладают следующие белки слюны. Лизоцим, низкомолекулярный белок, гидролизует β-1-4-гликозидную связь полисахаридов и мукополисахаридов, содержащих мурамовую кислоту, в клеточных стенках микроорганизмов.Лактоферрин участвует в различных реакциях защиты организма и регуляции иммунитета. Малые фосфопротеины, гистатины и статерины, играют важную роль в антимикробном действии. Цистатины являются ингибиторами цистеиновых протеиназ и могут выполнять защитную роль при процессах воспаления в ротовой полости. Муцины – крупные гликопротеины, которые в основном обеспечивают вязкую природу слюны – запускают специфическое взаимодействие между стенкой бактериальных клеток и комплементарными галактозидными рецепторами на мембране эпителиальных клеток. Подобные свойства обнаружены также у амилазы , фибронектина и β2-микроглобулина.
Третью крупную группу белков слюны составляют биологически активные вещества, регулирующие функции разнообразных систем организма. Так слюнные железы выделяют целый ряд веществ с гипо- и гипертензивным действием: калликреин, гистамин, ренин, тонин и др. Белковые факторы слюны человека, влияющие на гемопоэз, представлены эритропоэтином, фактором гранулоцитоза, тимоциттрансформирующим и колониестимулирующим факторами. Широко представлены в слюне разнообразные ростовые регуляторы: факторы роста нервов, эпидермиса, мезодермы, фибробластов; инсулин-подобный фактор роста и др. Большинство биологически активных факторов слюны являются пептидами или гликопротеинами. Для многих из них (факторы роста нервов и эпидермиса, паротин, калликреин, тонин и др.) доказано, что они выделяются из слюнных желёз как в ротовую полость, так и в кровеносное русло.
Низкомолекулярные белки слюны с молекулярной массой < 3 кДа образуются в основном путём протеолиза пролин-обогащённых белков, гистатинов и статеринов.
В слюне человека также обнаружены различные нейропептиды: метионин-энкефалин, субстанция Р, β-эндорфин [46], нейрокинин А, нейропептид Y, вазоактивный желудочный полипептид, кальцитонин-генерируемый пептид [16].
Одним из важнейших методов анализа белкового состава слюны является электрофорез. Использование для этой цели электрофореза в 12%-м полиакриламидном геле дало разные результаты у различных исследовательских групп. Shiba A. et al. получил 22 белковые полосы в препаратах из смешанной слюны, Oberg S.G. et al. – 29 полос, Rahim Z.H. et al. – 20 полос. Современная приборная база позволяет обнаружить до 30-40 различных белковых фракций в одномерных электрофореграммах слюнных препаратов. При этом индивидуальные отличия белковых электрофореграмм слюны оказываются, как правило, в концентрации отдельных белков, а не в их количестве. Повторный сбор слюны одних и тех же людей показал сохраняющееся постоянство белкового спектра у них . Десмосомы - сложноорганизованная специализированная структура клеточной адгезии, которая реализуется через специальные адгезивные молекулы - гликопротеины. Десмосома представлена в виде двух форм соединений. Одна из них - цитоплазматическая пластинка - осуществляет связь промежуточных филаментов клетки с плазматической мембраной. Вторая форма связывает плазматическую мембрану с внеклеточными межмембранными молекулами. Функцию десмосом обеспечивают кальций-связывающие белки - плакоглобины, десмоплакины, десмоколлины, десмоглеины, которые относятся к семейству кадгеринов. Эти клетки оказывают специфическое воздействие друг на друг.
Ферменты слюны (амилаза и мальтаза) расщепляют углеводы (крахмал) до моносахаров. Однако роль слюны как пищеварительного сока невелика. После попадания пищевого комка в желудок и пропитывания его кислым желудочным соком действие их прекращается, так как ферменты слюны работают в щелочной среде. Количество слюны, ее состав определяются характером пищи.

Приложенные файлы

  • docx 24059216
    Размер файла: 600 kB Загрузок: 0

Добавить комментарий