bekha


Билет 1
 Принципы классификации протеиногенных аминокислот.
Протеиногенными аминокислотами называют 20 аминокислот, которые кодируются генетическим кодом и включают в себя белки в процессе трансляции.
 По строению соединений, получающихся при расщеплении углеродной цепи аминокислоты в организме, различают:
 Глюкопластичные( глюкогенные) – при недостаточном поступлении углеводов или нарушении их превращения они через щавелевоуксусную и фосфоэнолпировиноградную кислоты превращаются в глюкозу (глюкогенез) или гликоген. Относят: глицин, аланин, серин, треонин, валин, аспарагиновая и глутаминовая кислоты, аргинин, гистидин и метионин.
 Кетопластичные (кетогенные) – ускоряют образование кетоновых тел – лейцин, изолейцин, тирозин и фенилаланин.
 В зависимости от того, могут ли аминокислоты синтезироваться в организме или обязательно должны поступать в составе пищи, различают: заменимые и незаменимые (гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин). В детском возрасте незаменимы также аргинин и гистидин.
По структуре различают семь классов аминокислот:
 Алифатические аминокислоты – глицин, аланин, валин, лейцин, изолейцин
 Оксиаминокислоты – серин, треонин
 Дикарбоновые аминокислоты и их амиды – аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин
 Двуосновные аминокислоты – лизин, оксилизин, гистидин, аргинин.
 Ароматические аминокислоты – фенилаланин, триптофан, тирозин.
 Серусодержащие аминокислоты -  цистеин или цистин, метионин
 Иминокислоты – пролин, оксипролин.
Важнейшие фосфолипиды. Их химическая структура, свойства, биологическое значение. Биосинтез, лимитирующие факторы синтеза (липотропные факторы), возможные биохимические нарушения при их недостаточночности. Сурфактант.
К этому классу сложных липидов относится глицерофосфолипиды и сфинголипиды.
Глицерофосфолипиды являются производными фосфатидной кислоты, в их состав входит глицерин, жирные кислоты, фосфорная кислота и азотсодержащие соединения.
Существует несколько подклассов: фосфотидилхолин, фосфотидилэтаноламины, фосфатидиламины, фосфотидилсерины и  т.д.Сфингомиелины являются наиболее распространенными сфинголипидами. Находятся в мембране животных и растительных клеток. Богата ими нервная ткань, обнаружены в почках, печени и других органах.
При гидролизе они образуют одну молекулу жирной кислоты, одну молекулу ненасыщенного аминоспирта сфингозина, одну молекулу азотистого основания.
Синтез локализован главным образом в эндоплазматической сети клетки. Сначала фосфатидная кислота в результате обратимой реакции с цитидинтрифосфатом (ЦТФ) превращается в цитидинфосфат-диглицерида (ЦДФ-диглицерид). Затем цитидинмонофосфат вытесняется из молекулы ЦДФ-диглицеида одним из двух соединений – серином или инозитом, образуя фосфатидилсерин или фосфатидилинозит, или 3-фосфатидил-глицерол-1-фосфат. В свою очередь фосфатидилсерин может декарбоксилироваться с образованием фосфатидилэтаноламина, который является предшественником фосфатидилхолина. В результате последовательного переноса трех метильных групп от трёх молекул S-аденозилметионина к аминогруппе остатка этаноламина образуется фосфатидилхолин.
Сурфактант – внеклеточный липидный слой с небольшим количеством гидрофобных белков, выстилающий поверхность альвеол, препятствует слипанию их стенок при выдохе.
 Как проявляется гипер- и гипокалиемия;  причины их развития.
Гиперкалиемия проявляется тошнотой, рвотой, метаболическим ацидозом, брадикардией, нарушением сердечного ритма.
Причинами гиперкалиемии могут служить:
 пониженное выделение калия с мочой при острой и хронической почечной недостаточности;
 внутривенное введение калийсодержащих растворов, особенно на фоне ослабленной выделительной функции почек;
 усиленный катаболизм белка, так как на 1 г азота высвобождается около 3 ммоль ионов калия, усиленный катаболизм углеводов (гликогена);
 некроз клеток, в частности при ожогах, краш-синдроме, печеночной коме, панкреатите и гемолизе;
 метаболический ацидоз, когда происходит перераспределение калия "выход его из клеток во внеклеточное пространство при неизменном общем содержании;
 первичная или вторичная недостаточность надпочечников, приводящая к значительным потерям натрия с мочой и компенсаторной задержке калия.
Гипокалиемия сопровождается адинамией, астенией, мышечной гипотонией, апатией, сухостью кожи, снижением кожной чувствительности. Наблюдается метеоризм и рвота симулирующие непроходимость.
К гипокалиемии может приводить следующее:
1. Потери калия через желудочно-кишечный тракт (рвота, понос, нарушение резорбции, пилоростеноз или введение слабительных).
2. Повышенное выделение калия слизистой кишечника при аденоме толстой кишки, опухоли поджелудочной железы (синдром Вернера-Моррисона) или при спру.
3. Потери калия через почки:
а) усиливающиеся под влиянием лекарственных средств (назначение диу-ретиков, гипотензивных средств, хинина и хинидина);
б) при заболеваниях почек, (почка, теряющая калий — хронические пиэло-и гломерулонефриты, врожденные заболевания канальцев — тубулопатии, и при полиурической стадии острой почечной недостаточности).
4. При эндокринных заболеваниях'
а) первичный или вторичный гиперальдостеронизм (синдром Кона — минералопродуцирующая аденома надпочечников или билатеральная гиперплазия надпочечников);
б) стимуляция продукции альдостерона при заболеваниях сердца, печени, почек, стресс-ситуациях, феохромоцитоме, синдроме Бартера, несахарном диабете, нейрогенной анорексии, беременности.
5. Нарушения распределения калия при метаболическом алкалозе, инсули-нотерапии (в последнем случае — за счет избыточного связывания калия в клетках, из-за усиленного синтеза гликогена и белков).
6. За счет недостаточного (менее 40 ммоль/сут.) поступления калия.
7. При введении ингибиторов карбоангидразы — фермента, который катализирует расщепление углекислоты на СО и воду. Снижение активности фермента приводит к защелачиванию мочи и полиурии. Свойством ингибировать карбоангидразу обладают, в частности, гипотиазид, гидрокарб и др.
4.По какому признаку различают сигнальные молекулы? 144
Гормоны:
Местного действия ( ЖКТ:
Дистантного действия – все гормоны. Жвн в лимфу и кровь
Билет 2
 Определить понятие «жизнь» с позиций биохимии, назвать задачи биохимии, в том числе клинической.
Жизнь – макромолекулярная система, осуществляющая регулируемый обмен веществ и энергии, а также самовоспроизведение.
Задачи биохимии, необходимость изучать:
1) строение и функции молекул живого;
2) структуру и функции над молекулярных образований;
3) механизмы поступления во внутреннюю среду пластических и биологически активных материалов;
4) механизмы высвобождения, накопления и использования энергии;
5) механизмы воспроизведения.
Предмет клинической биохимии — изучение нарушений химических процессов жизнедеятельности и методов выявления этих нарушений для их устранения или исправлении.
 Холестерол: химическая природа, биологическое значение, источники, содержание в крови, транспортные формы.  Метаболизм в печени.
Холестерол. На долю холестерола приходится основная масса липоидов (до 140 г) в тканях человека. Наиболее богаты холестеролом миэлиновые мембраны. Часть холестерола содержится в форме эфиров жирных кислот (депонированная или транспортные формы).
Функции холестерола: 1) структурный компонент клеточных мембран, 2) предшественник в синтезе других стероидов (гормонов, витамина Д, желчных кислот).
Источники холестерола: пища животного происхождения и биосинтез.
Биосинтез холестерола осуществляется на основе ацетил-КоА. Один из промежуточных продуктов — β-гидрокси-β-метилглутарил-КоА, кроме того следует назвать сквален и ланостерин. Пополнение фонда холестерола происходит за счет биосинтеза (около 1 г в сутки) и поступления из кишечника (0,3 г в сутки). Около 80% холестерола синтезируется в печени, около 10 в клетках кишечника около 5% в клетках кожи. Регулируется синтез холестерола по принципу обратной отрицательной связи: холестерол угнетает синтез фермента, катализирующего образование мевалоновой кислоты. Если содержание холестерола в пище превышает 1-2 г/ сут., синтез практически прекращается.
Нерастворимость или очень низкая растворимость жиров в воде обусловливает необходимость существования специальных транспортных форм для переноса их кровью. Основные из этих форм: хиломикроны, липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП). При электрофорезе они движутся с разной скоростью и располагаются на электрофореграммах в такой последовательности (от старта): хиломикроны (ХМ), ЛПОНП (пре-β), ЛПНП (β) и ЛПВП (α-).
Липопротеины представляют собой мельчайшие глобулярные образования: молекулы фосфолипидов расположены радиально гидрофильной частью к поверхности, гидрофобной к центру. Аналогичным образом расположены в глобулах и молекулы белков. Центральная часть глобулы занята триацилглицеридами и холестеролом. Набор белков неодинаков в разных липопротеинах. Как видно из таблицы, плотность липопротеинов прямо пропорциональна содержанию белка и обратно пропорциональна содержанию триглицеридов.
Хиломикроны образуются в клетках слизистой оболочки кишечника, ЛПОНП — в клетках слизистой и в гепатоцитах, ЛПВП — в гепатоцитах и плазме крови, ЛПНП — в плазме крови.
Хиломикроны и ЛПОНП транспортируют триацилглицериды, ЛПНП и ЛПВП преимущественно холестерол — это следует из состава липопротеинов.
Печени принадлежит важная роль в регуляции обмена холестерола. Исходное вещество в синтезе холестерола ацетил – КоА – компонент энергетического фонда клетки. Скорость синтеза холестерола зависит от уровня снабжения организма энергией.
 Почему некоторые заболевания почек сопровождаются нарушением кальциевого обмена?
208..299
4. Назвать класс фермента, который катализирует окислительно-восстановительную реакцию? Какая дополнительная информация требуется для определения подкласса.
Класс оксидоредуктазы – ОВР,  Подклассы и подподклассы, уточняют тип субстратов, переносимых группировок.
Билет 3
 Биологическая роль белков (функции в организме). Полифункциональность белков. Примеры белков, выполняющих разные функции
Каталитическая или ферментативная. Биологические катализаторы (ферменты) по химической природе белки, катализируют в организме химические превращения, из которых складывается обмен веществ.
Транспортная функция. Белки транспортируют или переносят биологически значимые соединения в организме. В одних случаях транспортируемое соединение сорбируется белковой молекулой. Это защищает от разрушения и обеспечивает перенос с током крови (например, транспорт альбумином некоторых гормонов, витаминов, лекарственных соединений). Этот вид транспорта называют пассивным. В других случаях пассивный транспорт сочетается с депонированием (запасанием) тех или иных соединений (например, трансферрин плазмы крови не только переносит железо, но и запасает (накапливает) его при избытке). С помощью мембранных белков переносятся соединения из зон с низкой концентрацией в зону с высокой. Это сопряжено с заметным потреблением энергии и называется активным транспортом (например, транспорт ионов натрия из цитоплазмы и калия в цитоплазму).
Механохимическая функция — способность некоторых белков изменять конформацию, уменьшать длинник молекулы, т.е. укорачивать или сокращать молекулы. Такие белки называют сократительными (некоторые мышечные белки). Название вытекает из того, что сократительные белки выполняют механическую работу за счет энергии химических связей.
Структурная (пластическая) функция выполняется белками — элементами клеточных мембран (эти белки могут обнаруживать каталитическую или транспортную активность), но главным образом фибриллярными белками. Последние в составе соединительных тканей обеспечивают их прочность и эластичность' кератин шерсти и волос, коллагены сухожилий, кожи, хрящей, стенок сосудов и связывающих тканей.
Гормональная функция (функция управления) реализуется гормонами пептидной или белковой природы. Они, влияя на продукцию или активность белков-ферментов, изменяют скорость катализируемых ими химических реакций, т.е. в конечном счете управляют обменными процессами.
Защитная функция белков реализуется антителами, интерферонами и фибриногеном.
Антитела — соединения белковой природы, синтез которых индуцируется в процессе иммунного ответа. Антитела, соединяясь с антигеном, образуют нерастворимый комплекс, делая антиген безопасным для организма.
Интерфероны — гликопротеины, синтезирующиеся клеткой после проникновения в нее вируса. Интерфероны вызывают образование внутриклеточных ферментов Они блокируют синтез вирусных белков, препятствуя копированию вирусной информации. Это приостанавливает размножение вируса.
Фибриноген — растворимый белок плазмы, который на последней стадии процесса свертывания крови трансформируется в фибрин — нерастворимый белок. Фибрин образует каркас тромба, ограничивающего кровопотерю
Плазмин — белок плазмы крови, катализирующий расщепление фибрина. Это обеспечивает восстановление проходимости сосуда, закупоренного фибриновым сгустком.
Энергетическая функция белков обеспечивается за счет части аминокислот, высвобождающихся при расщеплении белка в тканях. В процессе окислительно-восстановительного распада аминокислоты высвобождают энергию и синтезируют энергоноситель — АТФ.
Молекула белка — линейный полимер, или сополимер, структурная единица которого — соединенные пептидными связями аминокислоты — характеризуется сложной пространственной организацией, включающей три или четыре уровня Набор аминокислот и их последовательность лежат в основе многообразия и уникальности белковых молекул, в основе их физико-химических свойств. Они же определяют и множественность функций, свойственных белкам в живом организме.
2. Схема взаимодействия факторов плазмокоагуляции. 169.
3. Источники аммиака, пути его обезвреживания.
Источники аммиака:
Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кровь системы воротной вены, здесь концентрация аммиака больше, чем в общем кровотоке.
Аммиак образуется в различных тканях. Концентрация его в крови незначительна, т.к. он является токсичным веществом (0,4 - 0,7мг/л). Особенно выраженное токсическое действие он оказывает на нервные клетки, поэтому значительное его повышение приводит к серьёзным нарушениям обменных процессов в нервной ткани.
  
Обезвреживание аммиака – образуется при дезаминировании аминокислот, пуриновых оснований, биогенных аминов, амидов аминокислот и распад пиримидиновых оснований, осуществляется следующими путями:
 восстановительное аминирование
 образование амидов аспарагиновой и глутаминовой кислоты – аспарагина и глутамина.
 Образование аммонийных солей в почечной ткани
 Синтез мочевины (орнитиновый цикл) – основной путь обезвреживания и удаления аммиака  - осуществляется в печени.
 Начальная стадия мочевины – синтез карбомоил-фосфата (в матриксе митохондрий), фермент – карбомоилфосфатсинтетаза.
 карбомоил-фосфат + орнитин = цитрулин, фермент – орнитинкарбомоилфосфаттрансфераза, выход цитрулина из митохондрий в цитоплазму.
 Цитрулин + аспартат = аргининсукцинат, фермент – аргининсукцинатсинтетаза.
 Аргининсукцинат расщепляется аргининсукцинатлиазой на фумарат и аргинин
 Аргинин под действием аргиназы расщепляется гидролитически на мочевину и орнитин.
Мочевина – безвредное соединение, синтез происходит в печени.
4. К чему может приводить самоускоряющий процесс ПОЛ?
К разрушению клеточных мембран (состоящих из ФЛ и др. липидов)
Билет 4
1. Белки. Химическая природа: состав, уровни структурной организации и типы связей.
2. Кетоновые тела: представители, механизм их образования в норме, значение. Причины кетонемии (кетонурии): условия активации образования кетоновых тел, возможные последствия.
3.Виды первичных коагулопатий (название, причины возникновения).
4. Перечислить процессы, в которых участвует витамин С.
Ответ:
1) стр. 9
2) Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят b-оксимасляную и ацетоуксусную кислоты и ацетон. Количество их в условиях нормы невелико.
Появление повышенных количеств К. т. в крови и моче является важным диагностическим признаком, свидетельствующим о нарушении углеводного и жирового обменов.
Главным путем синтеза К. т., происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при b-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Этот путь синтеза К. т. более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ.
Из печени К. т. поступают в кровь и с нею во все остальные органы и ткани, где они включаются в цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. К. т. используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот.
Кетонемия - повышенное содержание в крови кетоновых тел. Возникает такое состояние при тяжёлой форме сахарного диабета или голодании. Обнаружение кетоновых тел в моче называют - кетонурия. В норме кетоновые тела в моче не обнаруживаются, так как ежедневно выводятся из организма органами выделения.
К причинам накапливания в моче кетоновых тел относятся многие причины, некоторые из них несут угрозу нормальной жизнедеятельности организма. Вот одни из причин:
длительное голодание организма;
общее переохлаждение;
физические перегрузки;
беременность;
чрезмерное употребление белков с пищей;
грипп;
анемия;
рак и другие заболевания.
При голодании в крови падает концентрация глюкозы, а при диабете глюкоза не поступает в клетку с необходимой скоростью. В результате начинается усиленный липолиз для высвобождения необходимой энергии. Мобилизованные жировые кислоты направляются из жировых депо в печень, где и образуются кетоновые тела. Пока их количество в пределах нормы, периферические ткани успевают произвести их окисление и получить таким образом недостающую энергию. При превышении нормы скорости окисления не хватает, и кетоны накапливаются в кровотоке.
    При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, т.к. все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез К. т.
Введение с пищей углеводов тормозит образование К. т. Инсулин стимулирует синтез жирных кислот из ацетил-КоА и активирует использование последнего в цикле трикарбоновых кислот, в результате чего снижается интенсивность синтеза К. т.
При обнаружении кетоновых тел в моче при сахарном диабете, медики говорят о переходе заболевания в более тяжелую стадию. Очень большое содержание в моче ацетона и уксусной кислоты при сахарном диабете, свидетельствует о приближении состояния гипергликемической комы у больного.
3) Приобретенные формы коагулопатии могут быть обусловлены нарушением функции печени, применением разных антикоагулянтов, в том числе варфарином, недостаточностью всасывания витамина К и повышенным потреблением компонентов системы свёртывания крови на фоне ДВС-синдрома.Также могут вызывать коагулопатию некоторые виды гемотоксичных змеиных ядов, например яды ботропсов, гадюк и других видов семейства гадюковые; некоторые виды вирусных геморрагических лихорадок, включая лихорадку денге и шоковый синдром денге; иногда вызывается лейкемией.Аутоиммунные формы коагулопатий обусловлены появлением антител (ингибиторов свертывания) к факторам свёртывания крови или фосфолипидам. Наиболее часто встречается коагулопатия иммунного генеза на фоне Антифосфолипидного синдромаУ некоторых людей нарушена работа генов, отвечающих за синтез коагуляционных факторов. Из числа коагулопатий наиболее часто встречаются гемофилия и болезнь Виллебранда. Более редкие генетические нарушения включают гемофилию С, гипопроконвертинемию и ряд других аномалий.
4) Основная функция витамина С – донор водорода в ОВР. Участвует в превращениях ароматических кислот, ведущих к образованию некоторых медиаторов, в синтезе кортикостероидов, в кроветворении и в формировании коллагена. Кроме того участвует в обмене железа: в кишечнике обеспечивает восстановление 3валентного в 2валентное – это обязательное условие всасывания железа.
Билет 5
 Принципы классификации белков. Классы, общая характеристика. Основные отличия между альбуминами и глобулинами, протаминами и гистонами.
По составу белки можно разделить на простые и сложные, первые содержат в молекуле только аминокислоты, вторые — еще и другие структуры (добавочные или простетические группы).
Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные.
Глобулярные белки отличаются шарообразной формой молекулы (эллипсоид вращения), растворимы в воде и в разбавленных солевых растворах. Хорошая растворимость объясняется локализацией на поверхности глобулы заряженных аминокислотных остатков, окруженных гидратной оболочкой, что обеспечивает хороший контакт с растворителем. К этой группе относятся все ферменты и большинство других биологически активных белков, исключая структурные.
Среди глобулярных белков можно выделить'
1) альбумины — растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония;
2) полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;
3) гистоны — низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;
4) протамины отличаются еще более высоким содержанием аргинина (до 85%), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки — составная часть нуклеопротеинов;
5) проламины характеризуются высоким содержанием глутаминовой кислоты (30-45%) и пролина (до 15%), нерастворимы в воде, растворяются в 50-90%—яом этаноле;
6) глутелины содержат около 45% глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.
Фибриллярные белки характеризуются волокнистой структурой, практически не растворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании, структурных элементов соединительной ткани (коллагены, кератины, эластины).
Сложные белки (протеиды) содержат наряду с протеиногенными аминокислотами органический или неорганический компонент иной природы — простетическую группу. Она связана с полипептидной цепью ковалентно, гетеропо-лярно или координационно. Важнейшие представители: гликопротеины (нейтральные сахара, аминосахара, кислые производные моносахаридов), липопротеины (триацилглицериды, фосфолипиды и холестерол), металлопротеины (ион металла, связанный ионной или координационной связью), фосфопротеины (остатки фосфорной кислоты, связанные через остаток серина или треонина), нуклеопротеины (нуклеиновые кислоты), хромопротеины (окрашенный компонент — пигмент или хромоген).
Важнейший хромопротеид — гемоглобин.
Нуклеопротеиды — соединения, молекула которых состоит из простого белка и нуклеиновой кислоты: дезоксирибонуклеиновой (ДНК) или рибонуклеиновой (РНК).
ДНК — неразветвленный полимер, образованный из связанных между собой нуклеотидов, содержащих дезоксирибозу. Нуклеотид включает одно из четырех азотистых оснований (аденин (А), тимин (Т), гуанин (Г) или цитозин (Ц), остаток рибозы и фосфорной кислоты (Р). Нуклеотиды в полимере соединены между собой через остаток фосфорной кислоты, образующей эфирную связь с С-3 в остатке рибозы предшествующего нуклеотида .Для ДНК всех видов клеток характерно равенство между количеством остатков аденина и тимина (А = Т), гуанина и цитозина (Г = Ц) — правил Чаргаффа, т.е. число пуриновых оснований равно числу пиримидиновыз Отношение А + Т к Г + Ц варьирует у разных видов в широких пределах -от 0,35 до 2,70.
Относительно друг друга цепи расположены так, что пуриновому основанию в одной из них соответствует пиримидиновое основание в другой. Эти основания комплементарны друг к другу, т.е. пространственно взаимодополняют одна другую.
В молекуле основания связаны водородными мостиками' двумя между А и Т и тремя — между Ц и Г .ДНК ядра животных клеток представляет собой не одну молекулу, а состоит из многих, распределенных по разным (у человека по 46) хромосомам. Как уже сказано, по первичной структуре, т.е. набору нуклеотидов, во всех клетках организма ДНК совершенно одинакова, в том числе и в специализированных клетках, но отличается по характеру белкового компонента.
РНК в отличие от ДНК, которая находится преимущественно в ядре, содержится в основном в цитоплазме, главным образом в рибосомах (это определяет их название), в небольшом количестве — в ядрах, главным образом
— ядрышках.
Сходна по первичной структуре с ДНК, отличаясь следующим:
1) вместо дезоксирибозы содержит рибозу;
2) вместо тимина — урацил (тимин присутствует в очень малых количествах).
Как и ДНК, РНК — это полимерная цепь, построенная по аналогичному Принципу, не обладает строгой упорядоченностью вторичной структуры (спи-рализованные участки менее протяженны, чем в ДНК, местами образует петли, на протяжении которых азотистые основания связаны водородными мостиками по принципу комп-лементарности в пределах одной цепи (рис.13).
В отличие от ДНК рибонуклеиновые кислоты разнообразны. Наиболее тяжелые происходят из рибосом — рибосомные РНК. Внутри растворимой клеточной фракции содержится растворимая РНК или транспортная (функциональное название). Третья разновидность — информационные РНК.
Рибосомные РНК (р-РНК) связаны с белками рибосомы, представленными десятками разновидностей в пределах одной и той же рибосомы.
Гемоглобин (НЬ) — важнейший хромопротеид, обладающий уникальной функцией
— перенос кислорода и углекислоты.
Белковый компонент НЬ — глобин, небелковый — гем. Структура НЬ неодинакова у разных видов и может иметь варианты у одного вида или одной особи. Отличия касаются белковой части — последовательности аминокислот. Структура гема идентична у всех позвоночных.
Молекула глобина содержит четыре полипептидные цепи, которые удерживаются вместе нековалентными связями. Гемоглобин А — основной гемоглобин взрослого человека— состоит из двух видов поли-пептидных цепей — а и р. О разновидностям гемоглобина, связанных с вариантами структуры глобина, мы будем говорить ниже.
Последовательности аминокислот в НЬА (вообще в гемоглобине 20 видов животных) расшифрованы полностью
Гем — молекула, построенная из четырех гетероциклов, содержащих азот — пиррольных колец.
Остатки пиррола соединены в молекуле гема по а-углеродным атомам метиновыми мостиками (-СН=), [3-углеродные атомы замещены в пиррольных кольцах метильными группами (4), винильными {2) и остатками пропионовой кислоты (2).
С атомами азота пиррольных колец в геме связан ион двувалентного железа. Кроме того, железо взаимодействует с атомом азота в остатках гистидина (Гис 87 а-субъединицы, Гис 92 [3-субъединицы). С белковой частью молекулы гем связан еще и электростатическим взаимодействием через пропиониловые остатки. Со стороны белка в этих связях участвуют остатки основных аминокислот (лизин, аргинин).
2. Этапы превращения фибриногена в фибрин, роль фактора Х111 и плазмина.
3. Катаболизм гема, локализация процесса, конечный продукт. Обезвреживание и выведение билирубина.  131
Разрушение гемоглобина происходит в такой последовательности:
 Раскрытие пиррольного кольца (разрыв цикла) - вердоглобин
 Удаление железа – биливердоглобин
 Отщепление (отделение) глобина – биливердин
 Восстановление гамма - метиновой группы – билирубин.
Высвободившееся железо поступает в костный мозг.
Неэстерифицированный билирубин – свободный или непрямой. Эстерифицированный – связанный или прямой.
Превращения связанного билирубина. Связанный билирубин ->желчь - >кишечник - > мезобилиноген - > удаление в виде стеркобилиногена с каловыми массами - > всасывание в кровоток ->
1)портальная система – гепатоциты – желчь – кишечник (в виде дипирролов) – выделение с каловыми массами или всасывание в кровоток
2) общий кровоток – выделение с мочой в виде уробилиногена.
4. Какие признаки позволяют отнести биологически активное вещество к классу витаминов, к витаминоподобным соединениям?
134, 142
Билет 6
 Пространственная структура белков. Понятие о нативном и денатурированном белке. Виды денатурирующих воздействий, и типы связей, которые могут разрушаться при денатурации. Конкретные примеры
Денатурация белка — следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур. Молекула денатурированного белка неупорядоченна — она приобретает характер случайного («статистического») клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента может произойти «ренатурация» — восстановление вторичной и третичной структур, а следовательно, и свойств.
Денатурирующие агенты' высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение преимущественно гидрофобных связей), мочевина и гуанидин (нарушение водородных связей).
К денатурирующим агентам относятся также детергенты, соли тяжелых металлов, ультрафиолет и другие виды излучений.
Денатурация не нарушает ковалентных связей, но повышает их доступность для других факторов, в частности для энзимов,
2.Описать взаимодействие вазопрессина, альдостерона и натрийуретического гормона в регуляции параметров внеклеточной жидкости.
Осмотическое давление и объем внеклеточной жидкости контролируется гормонами, для которых орган – мишень – почки: вазапрессином и альдостероном, натрийуретическим гормоном.
Вазопрессин секретируется окончаниями аксонов в нейрогипофизе. Активирует гиалуронидазу, что ускоряет гидролиз гиалуроновой кислоты и увеличивает проницаемость эпителия канальцев. В результате возрастает реабсорбция воды и конечная моча становится более концентрированной. Задержка воды приводит к разбавлению солей в водных сегментах организма, снижению осмотического давления – исчезает раздражитель осморецепторов.
Альдостерон секретируют надпочечники. Ускорение его секреции происходит при снижении концентрации натрия в крови(одновременно падает и концентрация ионов хлора). Накопление натрия в жидкостях ведет к росту осмотического давления, что стимулирует секрецию вазопрессина, увеличивающего задержку воды. Секреция альдостерона контролируется главным образом системой ренинангиотензин. Снижение давления в артериолах стимулирует секрецию ренина.
Натрийуретический  гормон, секретируемый клетками предсердия – пептид, усиливающий фильтрующую способность клубочка, что сопровождается увеличением объема мочи без изменения концетрации в ней натрия. Секреция гормона стимулирует рост артериального давления
3. Источники свободных жирных кислот крови, их дальнейшая судьба (описать пути метаболизма).
4. Назвать последовательные превращения 7-гидрохолестерола в активную форму витамина Д.
7 –дегидрохолестерол – предшественник витамина Д (кальциферол)
7 – дегидрохолестерол под возд. УФ-лучи - > холекальциферол (вит Д3) -> в печень –гидроксилирование в 25 положении -> 25 гидроксихолекальциферол -> в транспорт в почки:
- >гидроксилируется в 1 -> 1, 25 дигидрооксихолекальциферол (активная форма – контролируется паратгормоном околощитовидной железы)
- > слизистая оболочка кишечника -> белок предшественник в кальций связывающий белок
- > ускоряется связывание ионов Са+ из просвета кишечника – ускоряется реабсорбция Са в почечных канальцах.
Билет 7
 Физико-химические свойства белков: амфотерность, денатурация, растворимость. Факторы, определяющие эти свойства. Принципы метода электрофореза.
Растворимость белков  в воде
Многие  белки хорошо растворимы в воде, что определяется количеством полярных групп. Растворимость глобулярных молекул лучше, чем фибриллярных белков. Факторы, определяющие стабильность белковых растворов:
- наличие зарядов в белковой молекуле. Одноименные заряды способствуют растворимости белка, т.к. препятствуют соединению молекул и выпадению в осадок.
- Наличие ГИДРАТНОЙ оболочки, препятствующей объединению белковых молекул. Для осаждения белка, его необходимо лишить этих двух факторов устойчивости. Методом осаждения белка является вливание -осаждение белка с помощью нейтральных солей - (NH4)2-S04.
В полунасыщенном растворе (NH4)2-SO4 осаждаются глобулины, а в насыщенном - альбумины.
После удаления осаждающего фактора, белки переходят в растворённое состояние.
Белки — амфотерные полиэлектролиты, т. е. подобно аминокислотам они обладают кислотными и основными свойствами. Эти свойства белка обусловлены электрохимической природой R-радикалов аминокислот, входящих в состав белка. Амфотерная природа белков обусловливает определенную буферность их растворов. Однако при физиологических значениях рН она невелика. Исключение составляют белки, содержащие большое количество гистидина. каждый белок при каком-то определенном значении рН будет иметь суммарный электрический заряд, равный нулю; такое состояние белка называется изоэлектрическим состоянием,а величина рН, обусловливающая это состояние, называется изоэлектрической точкой (ИЭТ). В этой точке белок не обладает подвижностью в электрическом поле; имеет наименьшую растворимость в воде; белковые растворы обладают минимальной устойчивостью и минимальным осмотическим давлением.
метод электрофореза. Он основан на передвижении заряженной частицы в электрическом поле. Движение частицы происходит в жидкой среде, которая удерживается инертным твердым носителем, например полоской бумаги, гелевой пленкой из крахмала, опарой, полиакриламидами, декстраном, ацетатом целлюлозы, что позволяет существенно снизить диффузию фракционируемых белков в отличие от электрофореза в водной среде. Жидкость же служит проводящей средой для электрического поля, когда к ней приложено внешнее напряжение. Подвижность заряженной молекулы в электрическом поле называетсяэлектрофоретической подвижностью.
Денатурация белка — следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур. Молекула денатурированного белка неупорядоченна — она приобретает характер случайного («статистического») клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента может произойти «ренатурация» — восстановление вторичной и третичной структур, а следовательно, и свойств.
Денатурирующие агенты' высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение преимущественно гидрофобных связей), мочевина и гуанидин (нарушение водородных связей).
К денатурирующим агентам относятся также детергенты, соли тяжелых металлов, ультрафиолет и другие виды излучений.
Денатурация не нарушает ковалентных связей, но повышает их доступность для других факторов, в частности для энзимов,
 Назвать шесть основных патологических состояний, которые вызваны изменением осмотического давления или объема внеклеточной жидкости. По каким биохимическим показателям можно отличать шесть основных патохимических состояний водно-электролитного обмена.
Объем внеклеточной жидкости зависит от общих концентраций белка в плазме крови и содержания натрия в организме. Следовательно, контролируется теми же двумя гормонами, а кроме того, и так называемым третьим фактором — натрийуретическим гормоном, количество которого растет при увеличении объема плазмы. Гормон повышает скорость выделения натрия, ограничивая его реабсорбцию в канальцах, и, значит, уменьшает реабсорбцию воды (вторично).
Если пренебречь значением рН и составом водных сегментов, можно выделить шесть состояний, характеризующихся изменением осмотического давления и (или) объема внеклеточной жидкости, изменением содержания натрия в плазме крови и скорости его выделения с мочой.
Дегидратация гипотоническая развивается при потере соли, не сопровождающейся адекватной потерей воды. Это происходит при снижении реабсорбции натрия в полиурическую фазу почечной недостаточности, рвоте, диарее, введении диуретиков, церебральном синдроме солепотери, при гипоальдосте-ронизме.
Уменьшение объема внеклеточной жидкости, сгущение крови и повышение ее вязкости уменьшает эффективность работы сердца и ведет к гипотонии.
При гипоальдостеронизме, обусловленном недостаточностью коркового слоя надпочечников, и при отсутствии терапии нарушается секреция клубочками ионов водорода и аммонийных ионов. В сыворотке повышается концентрация ионов калия и происходит перемещение бикарбонатов в клетки, а ионов водорода — во внеклеточную жидкость. В итоге развивается ацидоз.
Дегидратация изотоническая может наблюдаться при аномально увеличенном выведении натрия, чаще всего — с секретом желез желудочно-кишечного тракта (изоосмотические секреты, суточный объем которых составляет до 6з /о к объему всей внеклеточной жидкости). Потеря этих изотонических жидкостей не ведет к изменению внутриклеточного объема (все потери — за счет внеклеточного). Их причины — повторная рвота, поносы, потеря через фистулу, формирование больших транссудатов (асцит, плевральный выпот), крово-плазмопотери при ожогах, перитонитах, панкреатитах.
Дегидратация гепертоническая связана с потерей воды без соответствующей потери натрия. Это может наблюдаться у лиц, не имеющих доступа к воде; оставленных без ухода больных, не реагирующих на ощущение жажды; после аномально большого выделения воды без последующей компенсации; у больных с несахарным и сахарным диабетом; при центральных расстройствах осморегуляции (опухоли мозга, черепно-мозговая травма). К этому же может привести солевая интоксикация (избыток хлорида натрия алиментарного и ятрогенного происхождения).
Гипергидратация гипотоническая, или водная интоксикация, обуславливается избыточным поступлением бессолевых жидкостей, нарушением выведения жидкости из-за почечной недостаточности или неадекватной секреции антидиуретического гормона (синдром Шварца-Бартера). В частности, это можно наблюдать у больных, которым вводят большой объем раствора глюкозы при нарушенной выделительной функции почек. Вода накапливается равномерно во всех водных сегментах, следствие чего — гипонатриемия и гипоосмолярность.
Гипергидратация изотоническая представляет собой увеличение внеклеточного объема жидкости без нарушения осмотического давления. Такое состояние может быть результатом сердечной недостаточности (увеличивается объем крови без нарушения осмолярности), гипопротеинемии при нефротическом синдроме, когда объем крови остается постоянным за счет перемещения жидкой части в интерстициальный сегмент (появляются пальпируемые отеки конечностей, может развиться отек легких). Последнее может явиться тяжким осложнением, связанным с парентеральным введением жидкости в терапевтических целях.
Гипергидратация гипертоническая проявляется увеличением объема жидкости во внеклеточном пространстве с одновременным ростом осмотического давления за счет гипернатриемии и обезвоживанием клеток.
Механизм развития нарушения таков' задержка натрия не сопровождается задержкой воды в адекватном объеме, внеклеточная жидкость оказывается гипертонической, и вода из клеток движется во внеклеточные пространства до момента осмотического равновесия. Причины нарушения многообразны: синдром Кона или Кушинга, питье морской воды, черепно-мозговая травма. Если состояние сохраняется долго, может наступить гибель в связи с повреждением клеток центральной нервной системы.
 Глюконеогенез: механизм, гормональный контроль, взаимосвязь гликолиза в мышцах и глюконеогенеза в печени.
Глюконеогенез — синтез глюкозы из неуглеводных предшественников. Основные из предшественников — пируват и лактат, промежуточные — метаболиты ЦТК, глюкогенные (глюкопластичные) аминокислоты и глицерин.
Узловая точка синтеза глюкозы — превращение пирувата в фосфоенолпи-руват (ФЕП).
Пируват карбоксилируется пируваткарбоксилазой за счет энергии АТФ, реакция осуществляется в митохондриях'
СН,-СО-СООН + СО, ——————————————» НООС-СН.-СО-СООН
Пируват             АТФ   АДФ + (Р)     Оксалоацетат
Затем происходит фосфорилирующее декарбоксилирование, катализируемое фосфоенолпируваткарбоксикиназой:
НООС-СН-СО-СООН + ГТФ ——— НС=С-СООН + ГДФ + СОд Оксалоацетат                    
Дальнейший путь образования Г-6-Ф представляет собой обратный путь гликолиза, катализируемый теми же ферментами, но в обратном направлении. Исключение составляет только превращение фруктозо-1,6-дифосфата в фрук-тозо-6-фосфат, катализируемое фруктозодифосфатазой
Ряд аминокислот (аспарагин, аспарагиновая кислота, тирозин, фенилаланин, треонин, валин, метионин, изолейцин, глутамин, пролин, гистидин и аргинин) тем или иным путем превращаются в метаболит ЦТК - фумаровую кислоту, а последняя — в оксалоацетат. Другие (аланин, серии, цистин и глицин) — в пируват. Частично аспарагин и аспарагиновая кислота превращаются непосредственно в оксалоацетат.
Глицерин вливается в процессы глюконеогенеза на стадии 3-ФГА, лактат окисляется в пируват.
Глюкоза поступает из кишечника в клетки, где подвергается фосфорилированию с образованием Г-6-Ф. Он может превращаться по одному из четырех путей' в свободную глюкозу; в глюкозо-1 -фосфат, использующийся в синтезе гликогена; вовлекается в основной путь, где происходит ее распад до СО, с высвобождением энергии, запасаемой в форме АТФ, либо до лактата; вовлекаться в ПФП, где осуществляются синтез НАДФ • Нд, служащего источником водорода для восстановительных синтезов, и образование рибозо-5-фосфата, используемого в синтезе ДНК и РНК.
Запасается глюкоза в форме гликогена, откладывающегося в печени, мышцах, почках. При расходовании гликогена в связи с интенсивными энерготратами или отсутствием углеводов в питании, содержание глюкозы и гликогена может пополняться за счет синтеза из неуглеводных компонентов метаболизма, т.е. путем глюконеогенеза.
4. Почему при механической желтухе снижается свертывание крови?
Желчь не поступает в кишечник, нет эмульгирования жиров, не поступает жирорастворимые витамины, витамин К –жирораст витамин, зависимый фактор свертывания, поэтому снижается свертывание крови.
Билет 8
1.Ферменты:  биологическая роль; химическая природа; структурно-функциональная организация. Типы коферментов, примеры.
2. Врожденные нарушения обмена моносахаридов (галактоземия, эссенциальная фруктоземия и наследственная непереносимость фруктозы). Химизм, молекулярные дефекты, биохимические сдвиги, возможные последствия.
3. Витамин К. Важнейшие источники, процессы в которых он участвует, возможные причины гиповитаминоза, биохимические сдвиги при гиповитаминозе.
4. Назовите азотистые основания фосфатидов  и основные представители фосфатидов тканей человека. Их значение.
Ответ:
1) Ферменты – это биологические катализаторы белковой природы. Все ферменты при воздействии на них денатурирующими агентами теряют свои нативные свойства и функциональную активность.
Свойства ферментов:
1-ферменты увеличивают скорость реакции, но не расходуются в процессе реакции.
2-ферменты высокоспецифичные по отношению к субстрату. Некоторые катализируют превращение единственного субстрата, а некоторые вообще только одного из стереоизомеров субстрата.
3-активность ферментов, т.е. способность в разной степени изменять скорость реакции. Это зависит от ряда факторов: температуры (отклонение от оптимума ведет к снижению активности), рН, ионной силы и от концентрации реагирующих субстратов.  С ростом концентрации скорость увеличивается лишь до определенного уровня – до концентрации насыщения, дальнейшее увеличение которой не сопровождается ростом скорости реакции.
Номенклатура ферментов включает корень слова и окончание аза – тирозиназа.
Классификация:
Класс Оксидоредуктазы – катализируют ОВР
Трансферазы – реакции межклеточного переноса (А-В + С = А + В-С)
Гидролазы – реакции гидролитического расщепления =С-О- и др. связей
Лиазы – реакции негидролитического расщепления с образованием 2х связей
Изомеразы – реакции изменения геометрической или пространственной структуры молекулы
Лигазы (синтетазы) – реакции соединения 2х молекул, сопровождающиеся гидролизом макроэргов.
Коферменты – это вещества, необходимые некоторым ферментам для проявления активности. Они непосредственно участвуют в катализируемой ферментом химической реакции.
Классификация:
а) неорганические (ионы металлов, некоторые анионы)
б) органические
Ионы металлов – ионы кальция, магния, калия, цинка, железа. Они участвуют в: стабилизации третичной или четвертичной структуры, в связывании или катализе субстрата.
Различают коферменты нуклеотидной природы, тетрапиррольные коферменты и коферменты – производные витаминов.
Коферменты – нуклеотиды – в составе трансфераз участвуют в переносе фосфата, пирофосфата, аденилата, в превращениях сахаров.
Тетрапиррольные коферменты идентичны гему в гемоглобине; участвуют в транспорте электронов в составе цитохромов, пероксидазы.
Коферменты – витамины участвуют в разнообразных химических реакциях обмена. Например, коферментная форма витамина В1 (тиамина) – тиаминдифосфат, катализирует реакцию декарбоксилирования.
2) Галактоземия. Распад глюкозы происходит в печени, ткани мозга и клетках крови и протекает через следующие реакции:
1) галактоза под воздействием галактокиназы превращается в галактозо-1-фосфат
2) галактозо-1-фосфат + АТФ под воздействием галактозо-1-фосфатуридинтрансферазы = УДФ-галактоза +АДФ
3) УДФ-галактоза под воздействием галактозо-УДФ-эпимеразы = УДФ-глюкоза
Соответственно из-за дефицита этих катализаторов и развивается это заболевание.
Дефицит галактокиназы проявляется ухудшением зрения, вызванным образованием катаракт. В моче обнаруживается галактоза и сахарный спирт.
Дефицит галактозо-1-фосфатуридинтрансферазы ведет к накоплению Г-1-Ф в кл. крови, печени, почках, мозге и хрусталике, к появлению в тканях сахарного спирта. Образуются катаракты. При кормлении галактозосдержащей пищей у ребенка развивается желтуха, диарея.
Эссенциальная фруктозурия обусловлена недостаточностью фосфофруктокиназы, которая катализирует превращение фруктозы в фруктозо-1-фосфат. Фруктоза накапливается в крови и выделяется с мочой. Клинические проявления отсутствуют.
Фруктозурию выявляют обычно при наличии гипергликемии и одновременном отсутствии в моче редуцирующих сахаров.
Наследственная непереносимость фруктозы проявляется вслед за введением в рацион ребенка фруктов или соков, содержащих фруктозу или ее источник сахарозу.
Заболевание связано с дефицитом фруктозо-1-фосфатальдолазы. Этот фермент катализирует расщепление фруктозо-1-фосфата до 3-ФГА, обеспечивая включение фруктозы в основной путь превращения глюкозы. В результате дефекта накапливается фруктозо-1-фосфат, развивается гипофосфатемия.
Важнейшие лабораторные признаки заболевания: фруктоземия, фруктозурия и фруктозо-1-фосфатурия, а также лактатемия, гиперурикемия и гипогликемия после нагрузки фруктозой.
3) Витамин К – антигеморрагический фактор. Поступает в организм с растительной (капуста, фрукты) и животной (печень) пищей, а также стимулируется микрофлорой кишечника.
Существует 2 ряда витамина К – филлохиноны К1-ряда и менахиноны – витамины К2-ряда. Первые содержатся в растениях, вторые синтезируются кишечными бактериями.
Функционирует в качестве кофактора карбоксилирования остатков глутаминовой кислоты в некоторых белках свертывания крови. Витамин К участвует в активации факторов свертывания крови.
Причина недостаточности вызвана нарушением образования его в кишечнике, или нарушением всасывания.
Признаки авитаминоза – нарушение свертывающей системы крови, а значит сильные кровотечения.
4)
Билет 9
 Номенклатура и классификация ферментов. Принцип классификации, характеристика классов. Конкретные примеры реакций, катализируемых ферментами разных классов.
Названия ферментов включает корень слова, отражающий характер катализируемой реакции или атакуемого субстрата, и окончание «аза» (тирозиназа – тирозин). Объединение ферментов в классы основано на типе катализируемых реакций.
1)Оксидоредуктазы – окисл-вост. реакции.
2)Трансферазы – реакции межмолекулярного переноса (A-B+C=A+B-C).
3)Гидролазы – реакции гидролитического расщепления =С - - О, =С - -N= и других связей.
4) Лиазы - реакции негидролитического расщепления с образованием двойных связей.
5) Изомеразы - реакции изменения геометрической или пространственной конфигурации молекулы.
6) Лигазы (синтетазы) – реакции соединения двух молекул, сопровождающиеся гидролизом макроэргов.
Каждый из 6 классов делях на подклассы и подподклассы, уточняющие типы субстратов, переносимых группировок и другие детали.Каждый фермент обозначают шифром, включающим номер класса, подкласса, подподкласса, и номер фермента в подподклассе. Затем следует рациональное название (лактат: НАД-оксиредуктаза) и обычно употребляемое (лактатдегидрогеназа).
 Причины и уровни нарушения катаболизма билирубина (патохимия желтух).
Определение содержания желчных пигментов в крови и моче позволяет установить уровень, на котором произошло нарушение их обмена, проявляющееся возникновением желтушного окрашивания кожных покровов и конъюк-тив — желтухой. Принимая во внимание три основных уровня, на которых осуществляется метаболизм гема, выделяют надпочечные, печеночные и подпеченочные желтухи.
Надпочечная желтуха связана с ускоренным высвобождением гемоглобина из эритроцитов (интенсификация гемолиза), ведущим к избыточному образованию свободного билирубина.
Характерны:
 гипербилирубинемия за счет свободного пигмента;
 прирост содержания уробилиногена в моче и стеркобилина в кале;
 отсутствие билирубина в моче;
 снижение резистентности эритроцитов (осмотической и кислотной).
Печеночная желтуха связана с патологическими состояниями, при которых нарушаются:
1. Все три стадии обезвреживания свободного билирубина — элиминация из крови, конъюгирование и выведение.
Изменяется содержание желчных пигментов в каловых массах.
2. Конъюгирование билирубина в связи с врожденным дефектом УДФ-глюкуронидтрансферазы.
3. Элиминация и транспорт билирубина гепатоцитом.
4. Выведение конъюгированного билирубина.
Дефект УДФ-глюкуронидтрансферазы, (синдром Криглер-Найяра) проявляется в двух 'разных по тяжести формах. Форма I обусловлена полной блокадой фермента, характеризуется появлением желтухи с первых дней жизни ребенка, резким повышением содержания непрямого билирубина в крови, поражением центральной нервной системы. Выведение билирубина не нарушено, о чем можно судить по цвету фекалий. Концентрация билирубина в крови поддерживается на невысоком, но постоянном уровне. Больные отстают в физическом и психическом развитии, периодически изменяются показатели функциональных проб печени. Гипербилирубинемия превышает 20 мг% (обнаруживается только свободный билирубин).
Форма II (синдром Люцей-Дрисколла) сопровождается неполной блокадой конъюгирования билирубина. Энзимдефект частично купируется введением индукторов ферментов, в частности фенобарбиталом.
Дефект элиминации и транспорта неконъюгированного билирубина (синдром Жильберта-Мейленграхта) вызывается метаболическим нарушением транспорта билирубина из крови в гепатоцит по градиенту концентрации. Предположительная причина — генетический дефект белков соответствующей транспортной системы (альтерация протеинов У и 2). Заболевание обнаруживают чаще в юношеском и молодом возрасте, нередко в связи с инфекционным гепатитом или другими острыми инфекционными заболеваниями. Проявляется легкой перемежающейся желтухой, слабостью, диспептичес-кими явлениями, возможны боли в животе, небольшое увеличение размеров печени. Течение хроническое с обострениями, периодически наблюдается гипербилирубинемия с преимущественным присутствием свободного билиру- бина, активированы АСТ и АЛТ, сорбитолдегидрогеназа.
Нарушение элиминации связанного билирубина (синдромы Дубина-Джонсона и Ротора) — конъюгация билирубина не нарушена, однако его глюкурониды не выводятся в печеночные ходы. Молекулярный механизм заболеваний неизвестен.
Проявления: желтуха, сопровождающаяся накоплением в основном связанного билирубина, периодически небольшое изменение функциональных проб печени, диспептические явления, утомляемость, боли в животе. При синдроме Дубина-Джонсона в бромсульфалеиновой пробе через 45 мин после инъекции отмечают повышение содержания красителя в крови. При синдроме Ротора выведение краски замедлено, желчные пути не контрастируются даже при внутривенной холецистографии.
Подведем итог:
билирубинемия наблюдается во всех случаях печеночной желтухи;
при синдромах Криглера-Найяра и Жильберта билирубинемия определена ростом содержания свободного билирубина;
при синдроме Дубина-Джонсона и синдроме Ротора билирубинемия обусловлена связанным билирубином;
синдром Криглера-Найяра отличается наличием признаков гемолиза (рост содержания свободного гемоглобина, снижение толерантности эритроцитов);
для синдромов Дубина-Джонсона и Ротора характерны изменения бромсульфалеиновой пробы: в обоих случаях резко замедлена, в первом — после 45 мин наблюдается рост содержания краски в крови.
В клинике существенно различать в первую очередь тип желтухи в зависимости от механизма возникновения: механическую (препятствия на пути движения желчи), паренхиматозную (связанную с нарушением функционирования печеночной паренхимы) и гемолитическую (обусловленную ускоренным распадом эритроцитов). Ниже представлены сопоставительные данные, позволяющие проводить дифференциацию этих форм желтухи (табл. 24).
Нормальные значения биохимических показателей, используемых в диагностике печеночных заболеваний:
АСТ — 0,1-0,45 мкмоль/(ч.мл) (определение по Райтману-Френкелю);
АЛТ — 0,1-0,68 мкмоль/(ч.мл) (те же авторы);
у-глутамилтранспептидаза — 250-1 767 нмоль/(с.л) — у мужчин и 167-1 100 нмоль/(с.л) — у женщин (унифицированный метод);
щелочная фосфатаза — 278-830 нмоль/(с.л) (унифицированный метод с р-нитрофенилфосфатом);
глутамат-дегидрогеназа — 3,48-21,0 мкмоль/(ч.л) (унифицированный метод Севела-Товарека);
общий билирубин — 8,5-20,5 мкмоль/л сыворотки (по Ендрашику), из них 75% — на долю свободного;
билирубин в моче в условиях нормы не обнаруживается (унифицированный метод — проба Розина);
альбумин сыворотки крови — 35-50 г/л (унифицированный метод с бром-крезоловым синим).
Функциональные пробы"
1. Тимоловая — от 0,0 до 4 ед, положительна — свыше 4 (по степени помутнения сыворотки в присутствии раствора тимола — унифицированный метод).
2. Сулемовая — 1,6-2,2 мл 0,1%-ного раствора сулемы на 0,5 мл сыворотки. Положительна при уменьшении объема раствора сулемы.
3. Вельтмана — 0,4-0,5 мл 0,5'^.ного раствора хлорида кальция. Положительна при образовании осадка с меньшим количеством раствора.
4. Нагрузка галактозой. Пациент получает орально 40 г галактозы в 250 мл воды. Пробы берут через 45 и 90 мин У здоровых людей через 90 мин концентрация галактозы в крови меньше, чем 1,39 ммоль/л, через 45 мин — меньше 0,84. Выделение галактозы с мочой длится при нормальной функции печени около 3 ч. Если за этот период выделяется более 3-4 г галактозы, можно думать о нарушении функции печени.
3. Назвать важнейшие источники витамина С, коферментную форму (если она известна), процессы в которых он участвует, биохимические сдвиги при гиповитаминозе.
Витамин С, или аскорбиновая кислота. Не синтезируется в организме человека и должна поступать с пищей. Необходима для нормального усвоения глюкозы и образования запасов гликогена в печени. Участвует в синтезе стероидных гормонов, в регуляции свертываемости крови, в обмене тирозина. В спортивной медицине применяют для профилактики гиповитаминоза, для ускорения адаптации к новым климатическим условиям, а также для профилактики и лечения простудных иинфекционных заболеваний. Следует избегать, длительного применения в больших дозах. Целесообразно сочетание с рутином и витаминами группы В.Значительное количество аскорбиновой кислоты содержится в продуктах растительного происхождения (цитрусовые, овощи листовые зеленые, дыня, брокколи, брюссельская капуста, цветная и кочанная капуста, черная смородина, болгарский перец, земляника, помидоры, яблоки, абрикосы, персики, хурма, облепиха, шиповник, рябина, печеный картофель в 'мундире'). В продуктах животного происхождения - представлена незначительно (печень, надпочечники, почки)
4. Что называют рН – оптимумом, температурным оптимумом действия? 
То значение температуры, при котором данный фермент проявляет наибольшую активность – температурный оптимум.
Билет 10
1. Механизм действия ферментов. Стадии ферментативных реакций. Значение образования фермент-субстратных комплексов в механизме ферментативного катализа.
2. Типы врожденных нарушений обмена аминокислот (гипераминоацидемия с гипераминоацидурией, врожденные нарушения транспорта аминокислот, вторичные аминоацидурии).
3.Биосинтез высших жирных кислот: необходимые компоненты, локализация процесса в клетке, регуляция, связь с  катаболизмом углеводов.
4. От чего зависит, будет ли воспринята информация, доставленная сигнальной молекулой к клетке
ОТВЕТЫ.
 Ферменты обладают очень высокой специфичностью. Фишер (Fischer) в 1890 г. высказал предположение, что эта специфичность обусловливается особой формой молекулы фермента, точно соответствующей форме молекулы субстрата (или субстратов). Эту гипотезу часто называют гипотезой «ключа и замка»: субстрат сравнивается в ней с «ключом», который точно подходит по форме к «замку», т. е. к ферменту.
СХЕМАТИЧЕСКИ:
 Е+S - >E-S (образование энзим субстратного комплекса)
 E-S - > E-P ( образование комплекса энзим – продукты, возникшее вследствие дестабилизации или активации субстрата)
 E-P - > E+P ( высвобождение продукта реакции и энзима)
Часть молекулы фермента, вступающую в контакт с субстратом, называют активным центром фермента, и именно активный центр (зона молекулы фермента, которая специфически взаимодействуют с субстратом )фермента имеет особую форму. Молекулы большей части ферментов во много раз крупнее, чем молекулы тех субстратов, которые атакует данный фермент. Активный же центр фермента составляет лишь очень небольшую часть его молекулы, обычно от 3 до 12 аминокислотных остатков. Роль остальных аминокислот, составляющих основную массу фермента, заключается в том, чтобы обеспечить его молекуле правильную глобулярную форму, которая, как мы увидим далее, очень важна для наиболее эффективной работы активного центра фермента. Образовавшиеся продукты по форме уже не соответствуют активному центру фермента. Они отделяются от него (поступают в окружающую среду), после чего освободившийся активный центр может принимать новые молекулы субстрата. В 1959 г. Кошланд (Koshland) предложил новую интерпретацию гипотезы «ключа и замка», получившую название гипотезы «индуцированного соответствия». На основе данных, позволяющих считать ферменты и их активные центры физически более гибкими, чем это казалось вначале, он заключил, что субстрат, соединяясь с ферментом, вызывает какие-то изменения в структуре его активного центра. Аминокислотные остатки, составляющие активный центр фермента, принимают определенную форму, которая дает возможность ферменту наиболее эффективным образом выполнять свою функцию. Подходящей аналогией в этом случае может служить перчатка, которая при надевании на руку соответствующим образом изменяет свою форму. По мере выяснения отдельных деталей механизма различных реакций в эту гипотезу вносятся уточнения. Представление о том, как работает фермент, можно получить с помощью рентгеноструктурного анализа и компьютерного моделирования. (учебник стр.36)
 Врожденные нарушения обмена аминокислот имеют тяжелые последствия, обусловленные токсическим действием аминокислот или их метаболитов, и прежде всего дисбалансом в их обмене.
Многообразные нарушения обмена аминокислот можно свести к следующим группам  патологических состояний:
1.Гипераминоацидемии, сопровождающиеся аминоацидурией, обусловлены энзимдефектом в цепи превращений аминокислоты или ее метаболитов. К ним относятся, например, фенилкетонурия, пролинемия, болезнь кленового сиропа и т.д.
2.Наследственные нарушения транспорта аминокислот, вызванные угнетением канальцевой транспортной системы.
В канальцевом аппарате транспорта аминокислот есть два механизма: а)группоспецифический, обеспечивающий транспорт основных, нейтральных аминокислот, иминокислот и глицина, и б)специфический механизм(транспорт лизина, глицина, цистина и др.).Эти механизмы менее мощны, чем неспецифические, но высоко специфичны.
3.Вторичные аминоацидурии, обусловленные действием различных по природе факторов на систему почечного транспорта аминокислот. Проявляются генерализованной гипераминоацидурией при нормоацидемии. Вторичные аминоацидурии могут сопровождать и внепочечные заболевания, ведущие к нарушению синтеза или активности ферментов белкового обмена (некроз печени, тяжелые ожоги, радиационные поражения, гиповитаминозы).
3.  Синтез ЖК протекает в цитозоле и включает ряд последовательных реакций:
1.Образование малонил-КоА из ацетил-КоА – регуляторная реакция в биосинтезе ЖК. Фермент  катализирующий эту реакцию ацетил-КоА-карбоксилаза. В первой стадии реакции СО2 ковалентно связывается с биотинов за счет энергии АТФ, во второй стадии СОО переносятся на ацетил-КоА с образованием малонил-КоА.
АДФ
Н3С-СО-SКоА+ СО2+ АТФ→ НООС-СН2-СО-SKoA
2.а)Н3С-СО-S-KoA+АПБ(ацилпереносящий белок)-SH→H3C-CO-S-АПБ+КоА-SH
                                                                                                    (ацетил-АПБ)
б)НООС-СН3-СО-S-КоА+АПБ→ KoASH+HOOC-CH2CO-S-АПБ            
 (малонил-АПБ)
Ацетильная и малонильная группы переносятся на АПБ при участии ацетил- и малонил-трансацилаз
3.НС3-СО-S-АПБ+НООС-СН3-СО-S-АПБ→Н3С-СО-СН2-СО-S-АПБ+АПБ-SH+CO2
(конденсация ацетила и малонила с образованием ацетоацетила-АПБ)
4.Н3С-СО-СН-СО-S-АПБ+НАДФ∙Н→Н3С-СНОН-СН2-СО-S-АПБ+НАДФ
(восстановление кетона в спирт)
5.Н3С-СНОН-СН2-СО-S-АПБ→Н3С-СН=СН-СО-S-АПБ
Н2О
(отщепление воды)
6.Н3С-СН=СН-СО-S-АПБ+НАДФ∙Н2→НАДФ+Н3С-СН2-СН2-СО-S-АПБ(бутирилл-АПБ)
(насыщение двойной связи)
Источник НАДФ∙Н2- пентозофосфатный путь превращения углеводов, где происходит восстановление НАД.
4. От чего зависит, будет ли воспринята информация, доставленная сигнальной молекулой к клетке.
Билет 11
1. Охарактеризовать зависимость скорости ферментативной реакции от времени (реакции нулевого и 1-го порядка), от концентрации субстрата, температуры и рН. Представить графики зависимостей.
2. Механизм влияния инсулина на содержание липидов в организме.
3. Декарбоксилирование аминокислот, ферменты, коферменты, продукты превращения и
их значение. Конкретные примеры.
4. Чем обусловлено движение протонов по цепи ферментов тканевого дыхания?
Ответы
 Охарактеризовать зависимость скорости ферментативной реакции от времени (реакции нулевого и 1-го порядка), от концентрации субстрата, температуры и рН. Представить графики зависимостей.
Зависимость скорости реакции от времени позволяет отнести исследуемый процесс к реакциям нулевого и первого порядка
[C]
 T    Реакция нулевого порядка протекает таким образом, что скорость исчезновения субстрата остается постоянной в течении всей реакции.
[C]
 
 T           Реакция первого порядка проходит при убыли субстрата за единицу времени, пропорциональной имеющемуся в данный момент количеству субстрата
Vmax
Vmax/2
Зависимость скорости реакции от концентрации субстрата. При заданной
                                   [S]
концентрации фермента скорость реакции зависит от концентрации субстрата. Графически эта зависимость выражается гиперболой. Скорость реакции непропорциональна концентрации субстрата: при первоначальной концентрации субстрата скорость возрастает, затем стремиться к постоянной величине, т.е. приближается к предельному значению.
Зависимость скорости реакции от температуры и рН. Ферменты- вещества белковой природы- чутко реагируют на изменени температуры и рН среды, проявляя оптимальную активность в ограниченных пределах значений этих факторов. В  обоих случаях выявляется оптимальное значение для взаимодействующего фактора, оптимум температуры- 41°С, оптимум рН-6,3.
V V
 
             10 20 30 40 50 60  Т                                           4   5  6     7     8       9 рН
 
 Механизм влияния инсулина на содержание липидов в организме.
Накопление липидов в депо — стимулирует инсулин: этот гормон активирует липогенез, обеспечивая транспорт глюкозы в клетку и ее окисление по основному пути. Это сопровождается накоплением ацетил-КоА и т. д, а также тормозит липолиз. Инсулин стимулирует фосфодиэстеразную активность в жировой ткани. Так как фосфодиэстераза играет важную роль в поддержании стационарного уровня цАМФ в тканях, увеличение содержания инсулина должно вызывать повышение активности фосфодиэстеразы, что в свою очередь приводит к уменьшению концентрации цАМФ в клетке, а следовательно, и образованию активной формы липазы.  Таким образом действие инсулина сводится к следующему: торможение освобождения жирных кислот в результате активности гликолиза в жировой ткани; активация фосфодиэстеразы цАМФ.
3. Декарбоксилирование аминокислот, ферменты, коферменты, продукты превращения и
их значение. Конкретные примеры.
Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию- реакция, катализируемая декарбоксилазами:
R-CH-COOH→R-CH2-NH2+CO2
    |                ↑
  NH2      Декарбоксилаза
Аминокислота              амин
Продукты декорбаксилирования- амины и СО2 – обладают высокой биологической активностью. С этим связано их название- биогенные амины. К этой группе соединений принадлежат многие медиаторы. Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются БАВ. Они выполняют функцию нейромедиаторов(серотонин, дофамин, ГАМК), гормонов(норадреналин, адреналин), регуляторных факторов местного действия(гистамин, карнозин, спермин)
Билет 12.
 Ферментативная кинетика. Определение понятия. Как установить скорость ферментативной реакции, как выражают активность или количество ферментов?
Кинетика ферментативных реакций- раздел энзимологии, изучающий зависимость скорости химических реакций, катализируемых ферментами, от химической природы реагирующих веществ, а также от факторов окружающей среды. Для измерения каталитической активности ферментов используют такие показатели, как скорость реакции или активность фермента. Скорость ферментативной реакции определяется изменением количества молекул субстрата или продукта за единицу времени. Скорость ферментативной реакции- мера каталитической активности фермента, её обозначают как активность фермента. Эффект фермента зависит при прочих равных условиях от его активности и именно активность и концентрация фермента определяют скорость катализируемой реакции, поэтому можно пользоваться условными единицами активности фермента.
 Реакции дезаминирования, переаминирования, непрямого дезаминирования и восстановительного аминирования. Схемы процессов, ферменты. Значение.
Дезаминирование, или отщепление, аминогруппы катализируется в организме теплокровных оксидазами аминокислот. Эти ферменты катализируют дезаминирование, сопровождающееся окислением- окислительное дезаминирование.(реакция на стр 115).Количество образующегося в организме аммиака таково, что его нельзя объяснить действием только глутаматдегидрогеназы при крайне низкой активности оксидаз остальных аминокислот. Этот парадокс расшифрован после открытия процессов переаминирования аминокислот.
Переаминирование аминокислот- реакция, в которой происходит как бы обмен аминогруппы на кетогруппу между аминокислотой и кетокислотой(формула на стр 116)
Важную роль играют две реакции переаминирования:
1.Аминокислота+ а- кетоглутаровая кислота а- кетокислота + глутаминовая кислота
2.аминокислота+ щавелевоуксусная кислота а- кетокислота + аспарагиновая кислота
Первая из этих реакций приводит к образованию глутаминовой кислоты- единственной из аминокислот, активно вовлекающейся в дезаминирование с преобразованием в кетоглутаровую кислоту и высвобождением аммиака.
В результате второй реакции образуется аспарагиновая кислота, которая, как и аммиак, участвует в образовании мочевины. Взаимосвязь переаминирования и дезаминирования аминокислот и судьба продуктов схема на 117 стр.
Большинство аминокислот не способно дезаминироваться в одну стадию, подобно Глу. Аминогруппы таких аминокислот в результате трансаминирования переносят на а- кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования, или непрямого дезаменирования. Непрямое дезаминирования происходит при участии 2 ферментов: аминотрансферазы и глутаматдегидрогеназы. Непрямое дезаминирование- основной способ дезаминирования большинства аминокислот. Обе стадии непрямого дезаминирования обратимы, что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей а-кетокислоты.
Восстановительное аминирование происходит в малом объеме и несущественно в обезвреживании аммиака, хотя и обеспечивает образование некоторых аминокислот, в частности глутаминовой.
 Нарушения тромбоцитарного гемостаза.
Система гемостаза представляет собой совокупность механизмов сохранения жидкого состояния крови, предупреждения или ограничения кровопотери за счет поддержания структурной целостности сосудистых стенок и образования тромбов при их повреждении  
 Какие признаки позволяют отнести биологически активные вещества к гормонам?
Гормоны (от греческого hurmaino - побуждаю) — биологически активные соединения, выделяемые железами внутренней секреции в кровь, или лимфу и оказывающие регуляторные влияния на метаболизм клетки. Для них характерны следующие, общие свойства:
 Действие на расстоянии от места продукции (дистантйость действии).
 Специфичность, заключающаяся в том, что эффект каждого из них не адекватен эффекту других гормонов.
 Высокая скорость образования и инактивация обусловленная этимкратковременность действия.
 Высокая биологическая активность Подобные вещества выделяют также клетки некоторых органов, не относящихся к железам внутренней секреции. В отличие, от гормонов эти биологически активные вещества действуют в местах образования и обозначаются как гормонойды  (гормоноподобные вещества).
Билет 13.
 Эффекторы ферментативных реакций (активаторы и ингибиторы). Значение. Виды. Биологический смысл конкурентного ингибирования продуктами реакции.
Эффекторы- химические соединения, которые тормозят(ингибиторы) или ускоряют(активаторы) ферментативные реакции. Эти соединения- регуляторы метаболизма в организме, их использование в исследовательской  работе позволяет получать данные о механизме действия ферментов.
Ингибиторы в зависимости от механизма торможения ферментативной реакции можно разделить на конкурентные и неконкурентные.
Конкурентные ингибиторы представлены соединениями, структура которых сходна со структурой субстрата. Это позволяет им связаться с активным центром фермента, причем степень их сродства к ферменту может быть как выше, так и ниже сродства между ферментом и субстратом.
Реакция в присутствии ингибитора протекает следующим образом:
1)Е+S↔ES↔E+P
2)E+I↔EI
Как видно из уравнения, часть молекул фермента занята в реакции с ингибитором. Это снижает концентрацию свободного фермента, а следовательно, снижает и скорость ферментативной реакции.
Максимальная скорость ферментативной реакции без ингибитора такая же, как и при добавлении малого или большого количества ингибитора.
Конкурентные ингибиторы- многие соединения. Некоторые конкурентные ингибиторы образуются в процессе обмена веществ: аналоги аминокислот, пуриновых и пиримидиновых оснований. Такие соединения- конкуренты природных субстратов, их называют антиметаболитами. Антиметаболиты тормозят в организме определенные метаболические процессы, в связи с чем их используют в медицинской практике при лечении злокачественных образований.
Конкурентное ингибирование могут осуществлять и продукты ферментативной реакции. Например, глюкозо-6-фосфотазу, которая катализирует гидролиз глюкозо-6-фосфата:
Глюкозо-6-фосфат+Н2О→Глюкоза+ Н3РО4.
Биологический смысл такого ингибирования- регуляция образования глюкозы. Если глюкоза накопилась в достаточном количестве и дальнейшее ее образование нецелесообразно, высокие концентрации глюкозы тормозят ее дальнейшее высвобождение  из глюкозо-6-фосфата.
Неконкурентные ингибиторы присоединяются к ферменту вне активного центра. В связи с этим избыток субстрата не снимает торможения, а наряду с начальной скоростью реакции снижается и максимальная.
Активаторы ферментов- вещества, которые разными путями повышают их способность ускоряют реакцию.
2. Значение эмульгирования  жира  для переваривания. Эмульгаторы. Физико-химическое свойство, обеспечивающее их способность эмульгировать  жиры. Изобразить схему эмульгирования капли жира.
Переваривание липидов происходит в 12-перстной кишке, куда поступают липаза (с соком поджелудочной железы) и конъюгированные желчные кислоты (в составе желчи). С желчью же поступает и неидентифицированное вещество, активирующее и стабилизирующее липазу.
Желчные кислоты как амфифильные соединения ориентируются на границе раздела жир-вода, погружаясь гидрофобной частью молекулы в каплю жира, а гидрофильной оставаясь в водной среде. Это приводит к снижению поверхностного натяжения и к дроблению капель жира, в итоге к увеличению суммарной поверхности жировых капель. На поверхности мельчайших мицелл (диаметр 0.5 мк) сорбируется липаза, гидролизующая эфирные связи в молекуле липидов. В результате триацилглицерид теряет остатки жирных кислот (вначале в α-, а затем в β положении). Высвобождающиеся жирные кислоты усиливают эмульгирование липидов. Всасываться могут негидролизованные жиры, но особенно интенсивно продукты их гидролиза. Около 3/4 липидов всасывается в виде моноацилгли-церидов и в малых количествах нераспавшиеся жиры.
Желчные кислоты образуют мицеллы с жирными кислотами и моноацил-глицеридами, что позволяет им проникнуть в клетки слизистой. В толще слизистой желчные кислоты высвобождаются, поступают в портальный кро-воток, с током крови в печень и затем секретируются в желчные капилляры. Это позволяет использовать их повторно. За сутки около 0,3 г желчных кислот, не всасываясь, теряется с калом. Потери восполняются за счет синтеза в печени.
Нарушения желчеобразования или поступления желчи в кишечник приводят к тому, что жиры выделяются в непереваренном или в частично переваренном виде с калом — стеаторея.
В клетках кишечника продукты переваривания жиров вступают в процесс ресинтеза, образуя липиды, свойственные данному организму. Ресинтезиро-ванный жир и отчасти продукты переваривания жира поступают в лимфатические капилляры и в небольшом количестве (до 15%) в капилляры портальной системы. Липиды нерастворимы в жидкостях организма, поэтому их транспорт кровью происходит только после включения в состав особых частиц — липопротеинов, где .роль солюбилизатора играют белки. Из четырех типов липопротеинов в кишечнике образуются два: хиломикроны и липопротеины очень низкой плотности (ЛПОНП). Эти образования называют транспортными формами липидов. Детальнее с ними познакомим вас позже. В составе транспортных форм липиды доставляются к органам и тканям.
 Связь основного пути окисления углеводов (Мейергофа-Парнаса-Эмбдена- Кребса) с тканевым дыханием. ( указать точки ответвления дыхательных цепей от основного пути.
Субстрат -> НАД - > ФАД - > Q -> Цитохром (в, с1, с, а+а3) - > О2 -> Н2О (эндогенная вода) выделяется больше Н2О чем потребляется. Протекает 3 молекулы АТФ.
4. Биологическая роль АТФ.
Билет 14.
 Аллостерические эффекторы, их особенности, биологическое значение (привести примеры). СТР. 47
Аллостерические эффекторы отличаются следующими тремя особенностями:
1) Их структура часто существенно отличается от природного субстрата фермента.
2)Они настолько специфичны, что даже близкие по структуре к ним вещества не способны изменять активность фермента.
3)Действуют исключительно на фермент, катализирующий первое звено в цепи многоступенчатого ферментативного процесса. Примером аллостерического активатора может служить АТФ, пример аллостерического ингибитора – гем.
2. Катаболизм гема, локализация процесса, обезвреживание и выведение билирубина.
Разрушение гемоглобина происходит в такой последовательности:
 Раскрытие пиррольного кольца (разрыв цикла) - вердоглобин
 Удаление железа – биливердоглобин
 Отщепление (отделение) глобина – биливердин
 Восстановление гамма - метиновой группы – билирубин.
Высвободившееся железо поступает в костный мозг.
Неэстерифицированный билирубин – свободный или непрямой. Эстерифицированный – связанный или прямой.
Превращения связанного билирубина. Связанный билирубин ->желчь - >кишечник - > мезобилиноген - > удаление в виде стеркобилиногена с каловыми массами - > всасывание в кровоток ->
1)портальная система – гепатоциты – желчь – кишечник (в виде дипирролов) – выделение с каловыми массами или всасывание в кровоток
2) общий кровоток – выделение с мочой в виде уробилиногена.
3. В какой последовательности взаимодействует сосудистая стенка и тромбоциты, какими соединениями обеспечивается взаимодействие?
4. Назовите транспортные формы холестерина в крови. Какие их них является атерогенными и антиатерогенными?
Основные из этих форм: хиломикроны, липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП). При электрофорезе они движутся с разной скоростью и располагаются на электрофореграммах в такой последовательности (от старта): хйломикроны (ХМ), ЛПОНП (пре-β), ЛПНП (β) и ЛПВП (α-).
ЛПНП в клетку – атерогенные
ЛПВС из клетки - антиатерогенные
Билет 15.
 Ферментативная кинетика. Как с помощью графического анализа результатов эксперимента отличить конкурентное торможение от неконкурентного? Представить графики зависимостей.
Кинетика ферментативных реакций- раздел энзимологии, изучающий зависимость скорости химических реакций, катализируемых ферментами, от химической природы реагирующих веществ, а также от факторов окружающей среды. Для измерения каталитической активности ферментов используют такие показатели, как скорость реакции или активность фермента. Скорость ферментативной реакции определяется изменением количества молекул субстрата или продукта за единицу времени. Скорость ферментативной реакции- мера каталитической активности фермента, её обозначают как активность фермента. Эффект фермента зависит при прочих равных условиях от его активности и именно активность и концентрация фермента определяют скорость катализируемой реакции, поэтому можно пользоваться условными единицами активности фермента.
Конкурентные ингибиторы- многие соединения. Некоторые конкурентные ингибиторы образуются в процессе обмена веществ: аналоги аминокислот, пуриновых и пиримидиновых оснований. Такие соединения- конкуренты природных субстратов, их называют антиметаболитами. Антиметаболиты тормозят в организме определенные метаболические процессы, в связи с чем их используют в медицинской практике при лечении злокачественных образований.
Неконкурентные ингибиторы присоединяются к ферменту вне активного центра. В связи с этим избыток субстрата не снимает торможения, а наряду с начальной скоростью реакции снижается и максимальная.
Активаторы ферментов- вещества, которые разными путями повышают их способность ускоряют реакцию.
2. Тканевой липолиз: химизм, ферменты, активаторы и ингибиторы процесса
3. Наиболее часто встречаемые виды молекулярных нарушений обмена аминокислот.
Многообразные нарушения обмена аминокислот можно свести к следующим группам  патологических состояний:
1.Гипераминоацидемии, сопровождающиеся аминоацидурией, обусловлены энзимдефектом в цепи превращений аминокислоты или ее метаболитов. К ним относятся, например, фенилкетонурия, пролинемия, болезнь кленового сиропа и т.д.
2.Наследственные нарушения транспорта аминокислот, вызванные угнетением канальцевой транспортной системы.
В канальцевом аппарате транспорта аминокислот есть два механизма: а)группоспецифический, обеспечивающий транспорт основных, нейтральных аминокислот, иминокислот и глицина, и б)специфический механизм(транспорт лизина, глицина, цистина и др.).Эти механизмы менее мощны, чем неспецифические, но высоко специфичны.
3.Вторичные аминоацидурии, обусловленные действием различных по природе факторов на систему почечного транспорта аминокислот. Проявляются генерализованной гипераминоацидурией при нормоацидемии. Вторичные аминоацидурии могут сопровождать и внепочечные заболевания, ведущие к нарушению синтеза или активности ферментов белкового обмена (некроз печени, тяжелые ожоги, радиационные поражения, гиповитаминозы).
4. Назовите важнейший витамин-антиоксидант. Его роль в антиоксидантной системе.
Витамин Е (токоферол)
Билет 16
 Изменение активности ферментов в плазме крови как показатель патологии тканей и органов. Некоторые индикаторные ферменты и изоферменты.
Изофермент – ферменты, отличающиеся по молекулярной структуре, но выполняющие одинаковую функцию. Имеют четвертичный уровень структуры.
2. Переваривание и всасывание нуклеопротеидов.  Распад пуриновых и пиримидиновых нуклеотидов: химизм, конечные продукты.
Переваривание начинается в желудке, где под влиянием HCl и песина разрушаются связи  между белковом компонентом нуклеопротеидов и их простетических груп. Нуклеотиды с составными элементами нуклеиновых кислот, участвуют в кумуляции энергии и ее транспорте.
3.  Какова роль витамина К в функционировании гемостаза, при каких формах коагулопатий имеет смысл назначение витамина К?
4. В каком случае понятия «Тканевое дыхание» и «Биологическое окисление» однозначны?
Понятие биологическое окисление и тканевое дыхание однозначны, если речь идет о биологическом окислении при участии кислорода (аэробное окисление)
Билет 17
1.Понятие об энзимодиагностике. Принцип энзимодиагностике. Изоферменты. Конкретные примеры
2. Суточная потребность в белках. Критерии пищевой ценности  белков. Переваривание и всасывание белков.
Важный критерий пищевой ценности белков: доступность аминокислот, аминокислотный состав (чем выше содержание незаменимых аминокислот, чем больше набирается в пище, тем выше пищевая ценность белка).
Сут потребность 0,59 г/кг массы тела.
3. Витамин В1: источники, коферментная форма, биохимические процессы, в которых он участвует в составе ферментов, биохимические сдвиги при гиповитаминозе.
Витамин В1, или тиамин. При недостатке тиамина страдает не только углеводный, но и практически все другие виды обмена. Потребность в тиамине существенно зависит от качественной и количественной структуры питания. Преобладание в рационе углеводов и белков увеличивает потребность в тиамине, увеличение доли жиров, наоборот, снижает эту потребность. Препятствует окислению аскорбиновой кислоты и пиридоксина.
4. Как реализуется антидиуретический эффект вазопрессина?
Концентрация мочи контролируется гормонами: вазопрессин (антидиуретический гормон), усиливая обратное всасывание воды, повышает концентрацию соли в моче, альдостерон стимулирует обратное всасывание натрия. Продукция и секреция этих гормонов зависит от осмотического давления и концентрации натрия во внеклеточной жидкости
Билет 18
 Сформулировать понятие  «Макроэргическая связь», «Макроэргические соединения». Макроэргические соединения живого организма. Значение. Универсальное макроэргическое соединение. Виды работ, совершаемых живым организмом; связь с окислительно-восстановительными процессами.
Макроэргическая связь – такая связь, на синтез которой расходуется и следовательно при расщеплении которой высвобождается порядка 4 ккал/моль.
Макроэргическое соединение – соединение, содержащее в своём составе макроэргическую связь.
Организм выполняет химическую, механическую, электрическую, осмотическую работы. Для их осуществления необходима энергия. Вся энергия высвободившееся в процессе ОВР именуется свободной = А. Высвобождается в процессе окисления субстратов и расходуется на все виды работ.
2.Описать взаимодействие вазопрессина, альдостерона и натрийуретического гормона в регуляции параметров внеклеточной жидкости.
Осмотическое давление и объем внеклеточной жидкости контролируется гормонами, для которых орган – мишень – почки: вазапрессином и альдостероном, натрийуретическим гормоном.
Вазопрессин секретируется окончаниями аксонов в нейрогипофизе. Активирует гиалуронидазу, что ускоряет гидролиз гиалуроновой кислоты и увеличивает проницаемость эпителия канальцев. В результате возрастает реабсорбция воды и конечная моча становится более концентрированной. Задержка воды приводит к разбавлению солей в водных сегментах организма, снижению осмотического давления – исчезает раздражитель осморецепторов.
Альдостерон секретируют надпочечники. Ускорение его секреции происходит при снижении концентрации натрия в крови(одновременно падает и концентрация ионов хлора). Накопление натрия в жидкостях ведет к росту осмотического давления, что стимулирует секрецию вазопрессина, увеличивающего задержку воды. Секреция альдостерона контролируется главным образом системой ренинангиотензин. Снижение давления в артериолах стимулирует секрецию ренина.
Натрийуретический  гормон, секретируемый клетками предсердия – пептид, усиливающий фильтрующую способность клубочка, что сопровождается увеличением объема мочи без изменения концетрации в ней натрия. Секреция гормона стимулирует рост артериального давления
 Биохимические сдвиги при сахарном диабете; механизмы возникновения гипергликемии при сахарном диабете.
В регуляции гликолиза и глюконеогенеза  большую роль играет инсулин. При егонехватки возникает заболевание сахарный диабет. Поышатся уровень глюкозы в крови  (гиперкликемия), появляется глюкоза в моче (глюкозонурия) и уменьшается уровень глюкозы в печени. Мышечная ткань не успевает утилизировать глюкозу  крови.При введении инсулина больному происходит корекция метобалических сдвигов
4.Перечислите пути использования холестерола в организме.
Клеточная мембрана – составная часть
Синтез стероидных гормонов
Синтез и выведение желчных кислот
Предшественник витамина д
Выводится фекалиям и кожным салом
Билет 19
1. Типы дегидрирования основных окисляемых в организме субстратов (насыщенных и ненасыщенных соединений, альдегидов, кетонов, кислот, аминокислот).
2. Причины и уровни нарушения катаболизма билирубина (патохимия желтух).
Определение содержания желчных пигментов в крови и моче позволяет установить уровень, на котором произошло нарушение их обмена, проявляющееся возникновением желтушного окрашивания кожных покровов и конъюк-тив — желтухой. Принимая во внимание три основных уровня, на которых осуществляется метаболизм гема, выделяют надпочечные, печеночные и подпеченочные желтухи.
Надпочечная желтуха связана с ускоренным высвобождением гемоглобина из эритроцитов (интенсификация гемолиза), ведущим к избыточному образованию свободного билирубина.
Характерны:
 гипербилирубинемия за счет свободного пигмента;
 прирост содержания уробилиногена в моче и стеркобилина в кале;
 отсутствие билирубина в моче;
 снижение резистентности эритроцитов (осмотической и кислотной).
Печеночная желтуха связана с патологическими состояниями, при которых нарушаются:
1. Все три стадии обезвреживания свободного билирубина — элиминация из крови, конъюгирование и выведение.
Изменяется содержание желчных пигментов в каловых массах.
2. Конъюгирование билирубина в связи с врожденным дефектом УДФ-глюкуронидтрансферазы.
3. Элиминация и транспорт билирубина гепатоцитом.
4. Выведение конъюгированного билирубина.
3. Витамин А: принятые названия, коферментная форма (если имеется); важнейшие источники витамина; процессы, в которых он участвует; биохимические сдвиги при гиповитаминозе.
Витамин А (Ретинол), (жирорастворимый). Важен для роста костей, способствует синтезу протеина (улучшает усвоение организмом протеина, что замедляет процесс старения). Он стимулирует многочисленные иммунные процессы, обеспечивая защиту организма на клеточном уровне, выработке разных антител и т.д. Стероиды сильно угнетают нашу иммунную систему, поэтому, чтобы повысить сопротивляемость организма различным бактериальным инфекциям, витамин А должен быть обязательной частью потребляемого набора пилюль.  Содержится в продуктах животного происхождения. Богатыми источниками витамина А являются сливочное масло, яичный желток, печень. Особенно много витамина А содержится в печени некоторых рыб- треска, морской окунь и др. и морских животных- кит, морж, тюлень. В растительной пище витамин А как таковой не встречается. Многие из них- морковь, шпинат, салат, петрушка, зелёный лук, щавель, красный перец, черная смородина, черника, крыжовник, персики, абрикосы содержат каротин, являющийся провитамином А. В организме из каротина образуется витамин А.Характерным признаком недостаточного поступления витамина А являются сухость и бледность кожи, шелушение, ороговение волосянных фолликулов, образование угрей, наклонность к гнойничковым поражениями кожи, сухость и тусклость волос, ломкость и исчерченность ногтей. Проявляется также уменьшение аппетита, повышенная утомляемость, заболевания пищеварительного тракта и дыхательных путей, поражение органов зрения. Рекомендует чередовать активное употребление витамина А с "отдыхом". Три недели ешь, неделю не ешь.
4. Как трансформируется энергия, высвобождающаяся при биологическом окислении?
Биологическое окисление – дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Если в роли конечного акцептора выступает кислород, процесс называют аэробным окислением, или тканевым дыханием, если конечный акцептор представлен не кислородом – анаэробным окислением. Для биологического окисления необходимо система переноса протонов и электронов и система доставки в ткани кислорода. Основной источник энергии в клетке – окисление субстратов кислородом воздуха.
Билет 20
 Основные положения биоэнергетики. Сходство и различия в получении и использовании энергии ауто- и гетеротрофными организмами, связь между ними. Роль АТФ в метаболизме и функции клетки.
1. Первая фаза тканевого дыхания, сопровождающаяся образованием CO2, не требует участия кислорода воздуха и осуществляется анаэробно
2. Важнейшая роль в осуществлении начальной анаэробной фазы дыхания играет не соединения, активирующие кислород, а специфические дегидрогеназы, катализирующие отщепление водорода от окисляемых субстратов.
3. Первичным акцептором атомов водорода, отщепляемых от окисляемых субстратов дегидрогеназами, являются особые термостабильные вещества – хромогены
4. Поглощаемый при тканевом дыхании кислород воздуха играет лишь роль конечного акцептора водорода.
Кроме того важной особенностью биологического окисления является то, что оно протекает постепенно, через многочисленные промежуточные ферментативные стадии, происходит многочисленные промежуточные ферментативные реакции.
Всё многообразие живых организмов на Земле по превращению энергии можно разделить на аутотрофов и гетеротрофов. Аутотрофы – способны непосредственно использовать энергию солнца, в процессе фотосинтеза создавать органические соединения из неорганических. Гетеротрофы ассимилируют уже готовые органические соединения, используя их как источник энергии или пластического материала для построения своего тела.
2. Назовите  биохимические процессы в тканях, в которых используются свободные аминокислоты (иллюстрируйте схемами). Роль системы глутаминовая - альфа-кетоглутаровая кислоты в сохранении баланса аминокислот.
3. Транспортные формы липидов в крови: названия, состав, места образования, значение.
Нерастворимость или очень низкая растворимость жиров в воде обусловливает необходимость существования специальных транспортных форм для переноса их кровью. Основные из этих форм: хиломикроны, липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП). При электрофорезе они движутся с разной скоростью и располагаются на электрофореграммах в такой последовательности (от старта): хйломикроны (ХМ), ЛПОНП (пре-β), ЛПНП (β) и ЛПВП (α-).
Липопротеины представляют собой мельчайшие глобулярные образования: молекулы фосфолипидов расположены радиально гидрофильной частью к поверхности, гидрофобной к центру. Аналогичным образом расположены в глобулах и молекулы белков. Центральная часть глобулы занята триацилгли-церидами и холестеролом. Набор белков неодинаков в разных липопротеинах. Как видно из таблицы, плотность липопротеинов прямо пропорциональна содержанию белка и обратно пропорциональна содержанию триглицеридов.
Хйломикроны образуются в клетках слизистой оболочки кишечника, ЛПОНП — в клетках слизистой и в гепатоцитах, ЛПВП — в гепатоцитах и плазме крови, ЛПНП — в плазме крови.
Хйломикроны и ЛПОНП транспортируют триацилглицериды, ЛПНП и ЛПВП преимущественно холестерол — это следует из состава липопротеинов.
4. Принцип классификации ферментов.
Классификация:
Класс Оксидоредуктазы – катализируют ОВР
Трансферазы – реакции межклеточного переноса (А-В + С = А + В-С)
Гидролазы – реакции гидролитического расщепления =С-О- и др. связей
Лиазы – реакции негидролитического расщепления с образованием 2х связей
Изомеразы – реакции изменения геометрической или пространственной структуры молекулы
Лигазы (синтетазы) – реакции соединения 2х молекул, сопровождающиеся гидролизом макроэргов.
Билет 21
1. Биологическое окисление: химизм, виды, локализация в клетке. Значение для организма.
2. Глюконеогенез: субстраты, связь с гликолизом (цикл Кори), локализация, биологическое значение. Регуляция.
3. Витамин Д: важнейшие источники витамина, коферментная форма (если она известна), процессы, ведущие к образованию активной формы; биохимические процессы, в которых он участвует; биохимические сдвиги при гиповитаминозе.
4. Энзим, катализирует расщепление пептидной связи в молекуле белка. Назовите класс и подкласс энзима.
Ответ:
1) Биологическое окисление – процесс, в ходе которого окисляющиеся субстраты теряют протоны и электроны, т.е. являются донорами водорода, промежуточные переносчики – акцепторами-донорами, а кислород – конечным акцептором водорода.
Реализоваться окисление может 3я способами: присоединением кислорода к атому углерода в субстрате, отщеплением водорода или потерей электрона. В клетке окисление протекает в форме последовательного переноса водорода и электронов от субстрата к кислороду. Кислород играет роль окислителя.
Окислительные реакции протекают с высвобождением энергии.
Восстановление атома кислорода при взаимодействии с парой протонов и электронов приводит к образованию молекулы воды. Следовательно, кислород потребляется в процессе биологического окисления. Клетка, ткань или орган, в которых протекает окисление субстрата, потребляют кислород. Потребление кислорода тканями называется тканевым дыханием.
Понятие биологическое окисление и тканевое дыхание однозначны, если речь идет о биологическом окислении при участии кислорода. Такой тип окисления можно назвать еще аэробным окислением.
Наряду с кислородом роль конечного акцептора в цепи переноса водорода могут играть соединения, восстанавливающиеся при этом в дигидроподукты.
Биологическое окисление – дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Если в роли конечного акцептора выступает кислород – аэробное окисление или тканевое дыхание, если конечный акцептор не кислород – анаэробное окисление.
2) Глюконеогенез — синтез глюкозы из неуглеводных предшественников. Основные из предшественников — пируват и лактат, промежуточные — метаболиты ЦТК, глюкогенные (глюкопластичные) аминокислоты и глицерин.
Узловая точка синтеза глюкозы — превращение пирувата в фосфоенолпи-руват (ФЕП).
Пируват карбоксилируется пируваткарбоксилазой за счет энергии АТФ, реакция осуществляется в митохондриях'
СН,-СО-СООН + СО, ——————————————» НООС-СН.-СО-СООН
Пируват             АТФ   АДФ + (Р)     Оксалоацетат
Затем происходит фосфорилирующее декарбоксилирование, катализируемое фосфоенолпируваткарбоксикиназой:
НООС-СН-СО-СООН + ГТФ ——— НС=С-СООН + ГДФ + СОд Оксалоацетат                    
Дальнейший путь образования Г-6-Ф представляет собой обратный путь гликолиза, катализируемый теми же ферментами, но в обратном направлении. Исключение составляет только превращение фруктозо-1,6-дифосфата в фрук-тозо-6-фосфат, катализируемое фруктозодифосфатазой
Ряд аминокислот (аспарагин, аспарагиновая кислота, тирозин, фенилаланин, треонин, валин, метионин, изолейцин, глутамин, пролин, гистидин и аргинин) тем или иным путем превращаются в метаболит ЦТК - фумаровую кислоту, а последняя — в оксалоацетат. Другие (аланин, серии, цистин и глицин) — в пируват. Частично аспарагин и аспарагиновая кислота превращаются непосредственно в оксалоацетат.
Глицерин вливается в процессы глюконеогенеза на стадии 3-ФГА, лактат окисляется в пируват. На рис. 57 представлена схема гликонеогенеза.
Глюкоза поступает из кишечника в клетки, где подвергается фосфорилированию с образованием Г-6-Ф. Он может превращаться по одному из четырех путей' в свободную глюкозу; в глюкозо-1 -фосфат, использующийся в синтезе гликогена; вовлекается в основной путь, где происходит ее распад до СО, с высвобождением энергии, запасаемой в форме АТФ, либо до лактата; вовлекаться в ПФП, где осуществляются синтез НАДФ • Нд, служащего источником водорода для восстановительных синтезов, и образование рибозо-5-фосфата, используемого в синтезе ДНК и РНК.
Запасается глюкоза в форме гликогена, откладывающегося в печени, мышцах, почках. При расходовании гликогена в связи с интенсивными энерготратами или отсутствием углеводов в питании, содержание глюкозы и гликогена может пополняться за счет синтеза из неуглеводных компонентов метаболизма, т.е. путем глюконеогенеза.
3) Витами Д – кальциферол, антирахитический фактор. С пищей (печень, сливочное масло, молоко, рыбий жир) поступает в виде предшественников. Основной из них – 7-дегидрохолестерол, который после воздействия УФ в коже превращается в холекальциферол (витамин Д3). Витамин Д3 транспортируется в печень, где происходит его гидроксилирование в позиции 25 – образуется 25-гидрооксихолекальциферол. Этот продукт транспортируется в почки и там гидроксилируется в активную форму.  Появление активной формы холекальциферола в почке контролируется паратгормоном околощитовидных желез.
Поступая в слизистую кишечника с током крови активная форма витамина обуславливает превращение белка-предшественника в кальцийсвязывающий белок, который ускоряет всасывание ионов кальция из просвета кишечника. Сходным образом ускоряется реабсорбция кальция в почечных канальцах.
Недостаточность может наблюдаться при дефиците витамина Д в пище, недостаточном солнечном облучении, заболеваниях почек и недостаточной продукции паратгормона.
При дефиците витамина Д снижается содержание кальция и фосфора в костной ткани. В итоге – деформация скелета – рахитические четки, Х-образные голени, птичья грудная клетка. Заболевание у детей – рахит.
4)гидролаза – класс, подкласс пептидаза, протеаза
Билет 22
1. Тканевое дыхание: химизм, значение для организма. Ферменты тканевого дыхания, их компартментализация.2. Катаболизм пуриновых оснований. Молекулярные механизмы нарушений пуринового обмена (классическая подагра, вторичные гиперурикемии).
3. Реакции трансметилирования, место реакций в обменных процессах, доноры и переносчики метильных групп.
4.Определить понятие «денатурация белка» и назвать виды денатурирующих воздействий в зависимости от их природы; привести примеры.
Ответ:
1) Тканевое дыхание (биологичесикое окисление) – процесс, в ходе которо- НАД, ФАД, УХ, ЦХ. Находятся в толще внутренней мембраны.
2) Катаболизм пуриновых оснований завершается образованием мочевой кислоты.
На 1ом этапе АМФ, теряя гидролитически рибозофосфат и аминогруппу, превращается в гипоксантин, а затем в ксантин. ГМФ, теряя рибозофосфатный остаток и аминогруппу, также превращается в ксантин. Окисление ксантина приводит к образованию мочевой кислоты (катализирует ксантиоксидаза). Эта реакция потребляет 1 молекулу кислорода: один атом включается в пурин, другой в пероксид водорода.
Мочевая кислота выводится в составе мочи.
Нарушение пуринового обмена. Основной конечный продукт пуринового обмена – мочевая кислота. Нарушение обмена мочевой кислоты может быть обусловлено ее избыточным образованием, снижением содержания уратсвязывающего протеина или нарушением ренального выделения.
Проявляются нарушения повышенным содержанием мочевой кислоты в крови – гиперурикемией.
Классическая подагра обусловлена одновременно 3я факторами – увеличенным синтезом мочевой кислоты, снижением содержания в плазме уратсвязующего белка и замедленным выделением с мочой.
Известны 2 генетически обусловленных энзимдефекта, приводящие к подагре:
1) повышение активности фосфорибозилпирофосфатсинтетазы
2)  частичный дефицит гипоксантингуанинфосфорибозилтрансферазы
Клинические проявления подагры обусловлены кристаллизацией мочевой кислоты в мезенхимальных тканях и в синовиальной жидкости.
Вторичные гиперурикемии обусловливаются действием лекарственных веществ, замедляющих выведение мочевой кислоты, ускоренным распадом нуклеопротеидов под действием лекарственных веществ или при некоторых заболеваниях.
3)
4) Денатурация белка – это следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур.
Молекула денатурированного белка приобретает характер случайного клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента, может произойти ренатурация – восстановление вторичной и третичной структур и свойств.
Денатурирующие агенты: высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение гидрофобных связей), мочевина (нарушение водородных связей), соли тяжелых металлов, ультрафиолет. Денатурация не нарушает ковалентных связей, но повышает их доступность для др. факторов.
Билет 23
1. Механизм трансформации энергии, высвобождающейся при биологическом окислении. Хемиоосмотическая гипотеза Митчелла.
2. Регуляция обмена липидов.
3. Назовите гормоны аденогипофиза и их органы мишени. Охарактеризуйте эффекты тиреотропина, регуляцию его продукции и функции.
4. На какие группы и по каким признакам можно разделить все известные витамины?
Ответ:
1)
2) При физиологических условиях депонирование липидов и их мобилизация, а следовательно, синтез и распад жирных кислот протекают с примерно одинаковыми скоростями, уравновешивая друг друга, что сопровождается периодическим преобладанием противоположно направленных процессов.
При ограниченном потреблении углеводов с пищей или нарушении Их использования (дефицит инсулина) усиливаются мобилизация жирных кислот и их транспорт кровью в печень. В этом случае снижается скорость потребления ацетил-КоА по двум путям: вовлечение в ЦТК и для синтеза жирных кислот в печени.
В итоге больше ацетил-КоА направляется на синтез ацето-ацетил-КоА, который используется для образования кетоновых тел и синтеза холестерола.
Кетоновые тела — это ацетоуксусная, (β-оксимасляная кислоты и ацетон. Количество их в условиях нормы невелико. При углеводном голодании их содержание может существенно повышаться, вплоть до появления запаха ацетона в выдыхаемом воздухе. Это состояние носит название кетоз. Причины кетоза — любые состояния, затрудняющие использование углеводов: ограничение в питании, нарушения всасывания углеводов, сахарный диабет, интенсивная мышечная нагрузка
При достаточном поступлении углеводов с пищей и нормальном поступлении глюкозы в клетки, обеспечиваемом инсулином, увеличивается содержание метаболитов ЦТК. Два из них (цитрат и изоцитрат) стимулируют ацетил-КоА-карбоксилазу, которая катализирует образование малонил-КоА — первого продукта на пути синтеза жирных кислот. Следовательно, ускорится и синтез последних. Накопление ацетил-КоА тормозит декарбоксилирование пирувата. В связи с этим повышается использование глюкозо-6-фосфата по пентозофосфатному пути, а это ведет к накоплению НАДФН2 необходимого для синтеза липидов.
В норме пополнение и расходование липидов изменяются таким образом, что периодически один из процессов преобладает над другим и это обеспечивает гомеостаз липидов.
В итоге можно сделать вывод о том, что избыточное поступление углеводов с пищей, не компенсируемое энерготратами, может сопровождаться чрезмерным накоплением липидов. Недостаточное поступление углеводов с пищей или не компенсируемые углеводами энерготраты, а также нарушения потребления глюкозы клетками (диабет сахарный) сопровождаются мобилизцией липидов и появлением кетоза.
3) Из четырех таких гормонов три синтезируются в аденогипофизе.
Фолликулостимулирующий гормон (ФСГ) гликопротеид, состоящий из двух субъединиц. Продукция активируется фоллиберином. Ингибитор образования фоллиберина — эстрогены.
Орган-мишень у самок яичники, где ФСГ инициирует развитие фолликулов, клетки внутреннего слоя которых начинают продуцировать эстрогены. Последние, как уже сказано, по принципу обратной связи тормозят продукцию фоллиберина, а следовательно, и ФСГ.
У самцов орган-мишень семенники, где ФСГ стимулирует развитие эпителия семявыносящих протоков, появление большого числа сперматоцитов на всех стадиях развития, включая стадию зрелых.
Лютеинизирующий гормон (ЛГ) также гликопротеид, состоит из двух субъединиц. Его продукция контролируется люлиберином (активация) и прогестероном. Мишень ЛГ у самок  зрелый фолликул (граафов пузырек). Гормон обеспечивает его окончательное созревание, овуляцию и образование желтого тела.
Мишень ЛГ у самцов клетки Лейдига, где гормон стимулирует образование тестостерона, и семенники, где гормон стимулирует рост интерстициальных клеток.
Пролатстин  простой белок, синтез которого ускоряется пролактолиберином, ограничивается пролактостатином и прогестероном. Мишень пролактина — молочная железа. Здесь гормон в синергизме с эстрогенами стимулирует пролиферацию функциональной ткани и секрецию молока. Кроме того, пролактин тормозит эффект лютеинизирующего гормона  овуляцию и лютеинизацию. В жировой ткани пролактин активирует липогенез.
4) По отношению к растворителям витамины делят на водо- и жирорастворимые.
Билет 24
 Окислительное фосфорилирование: механизм, локализация в клетке; значение.
 Окислительное фосфорилирование –это процесс сопряжения тканевого дыхания и фосфорилирования. Механизм сопряжения дыхания и фосфорилирования происходит в митохондриях.
2. Гликогенозы: формы и обусловливающие их молекулярные дефекты.
3. Важнейшие источники витаминов В2, В5, В3, В6; коферментные формы (если они известны); биохимические процессы, в которых они участвуют в составе ферментов; биохимические сдвиги при гиповитаминозе.
4. Перечислите известные механизмы передачи информации гормонами клетке.
1) стр. 60
2) стр.93
3) витамины
4) гормоны
Билет 25.
 Почему окислительное фосфорилирование называют также сопряженным фосфорилированием, какой структурный элемент клетки является сопрягающим фактором? Объясните механизм сопряжения. 
Окислительное фосфорилирование –это процесс сопряжения тканевого дыхания и фосфорилирования. Механизм сопряжения дыхания и фосфорилирования происходит в митохондриях.
2. Механизм влияния инсулина на метаболизм липидов.
3. Охарактеризуйте нейромедиаторы – продукты декарбоксилирования аминокислот. Образование аминов представьте схемами химических реакций.
Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию- реакция, катализируемая декарбоксилазами:
R-CH-COOH→R-CH2-NH2+CO2
    |                ↑
  NH2      Декарбоксилаза
Аминокислота              амин
Продукты декорбаксилирования- амины и СО2 – обладают высокой биологической активностью. С этим связано их название- биогенные амины. К этой группе соединений принадлежат многие медиаторы. Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются БАВ. Они выполняют функцию нейромедиаторов(серотонин, дофамин, ГАМК), гормонов(норадреналин, адреналин), регуляторных факторов местного действия(гистамин, карнозин, спермин)
4. Роль карнитина в окислении жирных кислот.
Билет 26
1. Определите понятие «Разобщение тканевого дыхания и окислительного фосфорилирования». Разобщающие факторы.
2. Стеатореи: определение;  виды, различающиеся по происхождению; биохимические признаки стеатореи; дифференциация видов стеаторей. 313
3. Паратгормон и кальцитонин: регуляция продукции; их органы - мишени, эффекты на метаболизм.
4. Какие реакции тромбинообразования зависят от витамина К?
1) 54, 60
2) 313
3) 153
4)
Билет 27
1. Роль печени в метаболизме белков, жиров, углеводов.
2. Субстратное фосфорилирование: химизм, биологическое значение, примеры
Синтез АТФ, протекающий помимо дыхательной цепи либо за счет окисления, либо за счет молекулярной перестройки субстрата, называют субстратным фосфорилированием.Синтез АТФ в значительно меньшем объеме может происходить и помимо дыхательной цепи за счет анаэробного окисления субстратов или их молекулярной перестройки – субстратное фосфорилирование. Пример преобразование 2-фосфоглицериновой кислоты в пировиноградную кислоту:
1)отщепление молекулы воды енолазой с запасанием высвободившейся энергии в макроэргической связи с остатком фосфорной кислоты;
2)перефосфорилированиес АДФ;
Субстратное фосфорилирование участвует в анаэробном расщеплении глюкозы. За счет субстратного фосфорилирования 1 молекулы глюкозы синтезируется 6 молекул АТФ.
3. Чем обусловлена тромборезистентность эндотелия?
4. Назвать коферментные формы витамина Вс и биохимические процессы, в которых он участвует в составе ферментов.
Билет 28
1. Общее содержание белка в сыворотке крови.  Белки плазмы крови по данным электрофореза. Основные индивидуальные белки плазмы крови, соотношение альбумины/глобулины. Диагностическое значение.
2. Желчные кислоты: представители, химическая природа и их предшественник. Значение в организме.
3. Важнейшие источники витамина В5, коферментная форма (если она известна); процессы, в которых он участвует; биохимические сдвиги при гиповитаминозе.
4. Нарисовать принципиальный график зависимости скорости (V) ферментативной реакции от концентрации субстрата (S).
Билет 29
1. Этапы окисления лекарственных веществ в печени, протекающего при участии цитохрома Р450.
2. Холестерол: источники, пути использования, транспорт в крови, выведение из организма.
Холестерол. На долю холестерола приходится основная масса липоидов (до 140 г) в тканях человека. Наиболее богаты холестеролом миэлиновые мембраны. Часть холестерола содержится в форме эфиров жирных кислот (депонированная или транспортные формы).
Функции холестерола: 1) структурный компонент клеточных мембран, 2) предшественник в синтезе других стероидов (гормонов, витамина Д, желчных кислот).
Источники холестерола: пища животного происхождения и биосинтез.
Биосинтез холестерола осуществляется на основе ацетил-КоА. Один из промежуточных продуктов — β-гидрокси-β-метилглутарил-КоА, кроме того следует назвать сквален и ланостерин. Пополнение фонда холестерола происходит за счет биосинтеза (около 1 г в сутки) и поступления из кишечника (0,3 г в сутки). Около 80% холестерола синтезируется в печени, около 10 в клетках кишечника около 5% в клетках кожи. Регулируется синтез холестерола по принципу обратной отрицательной связи: холестерол угнетает синтез фермента, катализирующего образование мевалоновой кислоты. Если содержание холестерола в пище превышает 1-2 г/ сут., синтез практически прекращается.
Роль гиперхолестеролэмии в возникновении осложненного холестериноза (атеросклероза) имеет достаточно подтверждений. К факторам риска относят повышенное артериальное давление, курение, гипертриглицеридемию и стрессы различного происхождения. Лица с содержанием холестерола в плазме ниже 5,2 ммоль/л с малой частотой ИБС устойчивы к этим факторам риска. 5,2 – 9 ммоль/л имеют решающее значение в возникновении атеросклеротичсеких изменений. Выше 9,0 – 100% беспонтово.
Начальный механизм атеросклероза – проникновение липопротеидов или продукта их деградации, богатых холестеролом или его эфирами, через эндотелий в субэндотелиальное пространство.
Ведущее биохимическое проявление атеросклероза — отложение холестерола в стенках артерий. Главная причина отложений — гиперхолестеролемия на фоне повреждений эндотелия, вызванных гипертонией, воспалительными процессами, повышенной свертываемостью крови, воздействием токсических веществ. В отложения холестерола в стенке артерий диффундирует холестерол из липопротеинов и хотя диффузия двусторонняя, преобладает движение к сосудистой стенке, что увеличивает отложения. Однако местные изменения не единственая причина развития атеросклероза. Заболевание — результат нарушения чрезвычайно сложной биохимической системы. Она включает в себя синтез холестерола, его обмен, транспорт и выведение, формирование липопротеинов, их катаболизм, рецепцию липопротеинов клетками. Нарушение в любом участке этой системы может привести к гиперхолестеролемии и отложению холестерола в стенках сосудов.
Так, значительный избыток холестерола в питании, хотя и ведущий к замедлению и блокаде биосинтеза холестерола в печени и стенке кишечника, может явиться причиной гиперхолестеролемии.
Основной источник холестерола для не синтезирующих его тканей — ЛПНП. Поглощение клеткой холестерола из ЛПНП включает такие этапы.
1. Связывание ЛПНП с рецепторами плазматических мембран клеток (в том числе клеток сосудистой стенки).
2. Поглощение комплекса рецептор-ЛПНП клеткой путем эндоцитоза.
3. Слияние комплекса с лизосомами и гидролиз этерифицированного холестерола с образованием свободного холестерола.
4. Использование холестерола в биосинтезе мембран или запасание в клетке.
Если в клетке накоплен избыток холестерола, новые рецепторы не образуются, и клетки теряют способность поглощать холестерол из крови. При наследственном отсутствии или дефиците рецепторов общее содержание холестерола и ЛПНП в крови заметно возрастает и это приводит к тому, что холестерол откладывается в различных тканях.
Причиной наследственной гиперхолестеролемии может быть и нарушение переноса комплекса рецептор-ЛПНП внутрь клетки. Повидимому, существуют и нарушения других механизмов метаболизма холестерола.
пути использования холестерола в организме.
Мембраны, печень, желчные кислоты.
3. Как регулируется продукция АКТГ? Какие функции он выполняет?
Адренокортикотропный гормон (АКТТ)  полипептид из 39 аминокислотных остатков. Продукция  активируется кортиколиберином,  ограничивается кортикостероидными гормонами (отрицательная обратная связь).
Орган-мишень АКТТ  надпочечники, в корковом слое которых гормон через аденилатциклазную систему ускоряет синтез и секрецию кортикостероидов, стимулируя лимитирующую реакцию синтеза кортикостероидов  гидроксилирование холестерола. Это превращает его в предшественник кортикостероидов. Мишень АКТГ  также клетки жировой, ткани (активация липолиза) и клетки нейрогипофиза .
4. Написать структурную формулу дипептида глицилаланин.
Билет 30
 В какой последовательности взаимодействуют гормоны в управлении метаболизмом (характер соподчиненности).
В управлении метаболизмом гормоны участвуют следующим образом. Поток информации о состоянии внутрённей среды организма и об изменениях, связанных с внешними воздействиями, поступает в нервную систему, там перерабатывается и формируется ответный сигнал. Он поступает к органам-эффекторам в виде нервных импульсов по центробежным нервам и опосредованно через эндокринную систему.
Пунктом, где сливаются потоки нервной и эндокринной информации, является гипоталамус: сюда поступают нервные импульсы из разных отделов головного мозга. Они определяют продукцию и секрецию гипоталамических гормонов, влияющих в свою очередь через гипофиз на продукцию гормонов периферическими эндокринными железами. Гормоны периферических желез, в частности мозгового вещества надпочечников (биогенные амины), контролируют секрецию гипоталамических. В конечном счете, содержание гормона в кровотоке поддерживается по принципу саморегуляции. Высокий уровень гормона выключает или ослабляет по механизму отрицательной обратной связи его образование, низкий уровень усиливает продукцию.
2.Важнейшие углеводы пищи; их переваривание и всасывание. Нарушения переваривания и всасывания; возможные причины.
расттельного происхождения. Мучные изделия, крупы и картофель поставляют крахмал, пищевой сахар и свекла — сахарозу, злаки, в частности ячмень,
— мальтозу, фрукты и мед - фруктозу и глюкозу. Из продуктов животного происхождения заметный источник углеводов (лактозы) — молоко. Лактоза содержится также и в кондитерских изделиях, в вареньях, куда ее добавляют к<1К средство, предупреждающее осахаривание. Суточная потребность организма составляет 400-500 г.
Переваривание углеводов начинается в тонком кишечнике. Кратковременное воздействие амилазы слюны на крахмал пищи существенной роли не играет, так как в просвете желудка кислая среда инактивирует этот фермент.
В тонком кишечнике крахмал под действием амилазы поджелудочной железы, выделяющейся в 12-перстную кишку с панкреатическим соком, расщепляется до мальтозы и изомальтозы. Эти дисахариды, а также сахароза
и лактоза расщепляются специфическими гликозидазами — мальтазой, изо-мальтазой, сахаразой и лактазой соответственно. Эти ферменты продуцируются клетками кишечника, не выделяясь в просвет, а действуя на поверхности клеток (пристеночное пищеварение)
Расщепление дисахаридов приводит к высвобождению глюкозы, фруктозы и галактозы. Проникновение моносахаров через клеточные мембраны (всасывание) происходит путем облегченной диффузии при участии специальных транслоказ. Глюкоза и галактоза всасываются еще и путем активного транспорта за счет градиента концентрации ионов натрия, создаваемого Nа+-, 1^-АТФазой. Это обеспечивает их всасывание даже при низкой концентрации в кишечнике.
Основной моносахарид, поступающий в кровоток из кишечника, — глюкоза. С кровью воротной вены она доставляется в печень, частично задерживается клетками печени, частично поступает в общий кровоток и извлекается клетками других органов и тканей.
Повышение содержания глюкозы в крови на высоте пищеварения увеличивает секрецию инсулина. Он ускоряет ее транспорт в клетки, изменяя проницаемость клеточных мембран для нее, активируя транслоказы, ответственные за прохождение глюкозы через клеточные мембраны. Скорость поступления глюкозы в клетки печени и мозга не зависит от инсулина, а лишь от ее концентрации в крови.
3. Витамин В1. Альтернативные названия. Важнейшие источники. Коферментная форма и процессы, в которых он участвует в составе ферментов (указать катализируемые реакции) Возможные причины гиповитаминоза. Биохимические сдвиги при гиповитаминозе.
4. Назвать заменимые и незаменимые аминокислоты.
К незаменимым относятся гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин В детском возрасте незаменимы также аргинин и гистидин (взрослый организм не требует их поступления с пищей).
Билет 31
1. Классификация сигнальных молекул в зависимости от расстояния, на котором они действуют. Примеры.
2. Общее представление о синтезе пиримидиновых и пуриновых оснований.
3. Витамин В6. Альтернативные названия. Важнейшие источники. Коферменты. Биохимические процессы, в которых он участвует в составе ферментов (указать катализируемые реакции). Возможные причины гиповитаминоза, биохимические сдвиги при гиповитаминозе.
4. Принципы обнаружения врожденных энзимдефектов.
Билет 32
1.Механизмы передачи гормонального сигнала в клетку с участием рецепторов.
2. Патохимические характеристики гликемии, виды отклонений от нормы, причины.
3. Витамин Е. Химическая природа, коферментная форма (если она известна); биохимические процессы, в которых он участвует; возможные причины гиповитаминоза, биохимические сдвиги при гиповитаминозе.
4. Почему ЛПНП называют атерогенными, а ЛПВП – антиатерогенными?
Повышенное содержание ЛПНП приводит к отложению холестерола, плюс ко всему ЛПНП плотности являются источником для синтеза холестерола несвойственными ему тканями.
Билет 33
1.Генерация энергии как процесс, объединяющий метаболизм белков, липидов и углеводов.
Независимо от характера вовлекающегося в обменные процессы химического соединения высвобождение заключенной в его химических связях энергии осуществляется главным образом путем их окислительно-восстановительного распада. Объединяющий момент — наличие единой ля всех соединений структуры, обеспечивающей постепенное высвобождение .энергии. Такая система — цепь дыхательных ферментов и конечный акцептор водорода (молекулярный кислород), который доставляется с помощью единого для всех случаев механизма (транспорт в форме оксигемоглобина). Интегрирующим моментом является и то, что энергия, высвобождаемая при переносе протонов и электронов по дыхательной цепи, запасается путем синтеза универсального макроэргического соединения (или группы родственных соединений).
Реже энергия генерируется путем внутримолекулярной перестройки, ведущей к возникновению макроэргической связи. Этот путь генерации также интегрирует обмен всех видов молекул, так как во всех случаях акцепторы макроэргической связи — сходные соединения — дифосфорные эфиры нуклеозидов.
2.Сформулируйте понятие «гемостаз», назовите его компоненты и охарактеризуйте сосудисто-тромбоцитарный гемостаз.
3. Витамин С. Химическая природа; кофермент (если известен); биохимические процессы, в которых он участвует; возможные причины гиповитаминоза; биохимические сдвиги при гиповитаминозе.
Витамин С, или аскорбиновая кислота. Не синтезируется в организме человека и должна поступать с пищей. Необходима для нормального усвоения глюкозы и образования запасов гликогена в печени. Участвует в синтезе стероидных гормонов, в регуляции свертываемости крови, в обмене тирозина. В спортивной медицине применяют для профилактики гиповитаминоза, для ускорения адаптации к новым климатическим условиям, а также для профилактики и лечения простудных иинфекционных заболеваний. Следует избегать, длительного применения в больших дозах. Целесообразно сочетание с рутином и витаминами группы В.
4. Назвать предшественник кортикостероидов, кофактор синтеза.
Билет 34
 Интеграция всех метаболических путей через образование строительных блоков и восстановительных потенциалов.
В большинстве процессов биосинтеза имеется необходимость превращения предшественника в более восстановленный продукт. Поставщиком высокоэнергетических электронов, необходимых для реакций восстановления, служит в большинстве случаев НАДФ • Н„ (например, реакции гидроксилирования, реакции, обратные р-окислению). В этом случае интегрирующий момент — использование для разных путей метаболизма единого донатора водорода, образующегося в единственном, объединяющем все биосинтезы процессе — пентозофосфатном пути превращения углеводов.
Образоиание строительных блоков для биосинтеза. Те процессы, в ходе которых образуются макроэргические соединения и НАДФ • Н — одновременно и продуценты строительных блоков для биосинтезов. Так, образующийся при гликолизе дигидроксил-ацетонфосфат превращается в скелет фосфати-дилхолина и других фосфатидилглицеридов. Фосфоенолпируват участвует в построении углеродного скелета ароматических аминокислот, ацетил-КоА (общий промежуточный продукт превращения глюкозы, липидов и ряда аминокислот) служит поставщиком остатка ацетила для синтеза жирных кислот и многих других соединений. Сукцинил-КоА — метаболит ЦТК, который может происходить из глюкозы, липидов и аминокислот, — один из предшественников порфиринов и других соединений. Согласно сказанному, строительные блоки возникают как промежуточные продукты процессов катаболизма, ведущих к высвобождению и запасанию энергии. Следовательно, генерация энергии восстановительных потенциалов и строительных блоков интегрирована в единый многофункциональный процесс.
Итак, обмен химического соединения, независимо от его структуры, подчиняется стратегическим целям метаболизма. Достижение цели обеспечивается в каждом случае принципиально сходной тактикой. Этим не исчерпывается единство метаболизма, можно назвать еще целый ряд интегральных признаков.
 Переваривание пищевых липидов: условия; всасывание  продуктов переваривания; их превращения в слизистой кишечника и транспорт .
Переваривание липидов происходит в 12-перстной кишке, куда поступают липаза (с соком поджелудочной железы) и конъюгированные желчные кислоты (в составе желчи). С желчью же поступает и неидентифицированное вещество, активирующее и стабилизирующее липазу.
Желчные кислоты как амфифильные соединения ориентируются на границе раздела жир-вода, погружаясь гидрофобной частью молекулы в каплю жира, а гидрофильной оставаясь в водной среде. Это приводит к снижению поверхностного натяжения и к дроблению капель жира, в итоге к увеличению суммарной поверхности жировых капель. На поверхности мельчайших мицелл (диаметр 0.5 мк) сорбируется липаза, гидролизующая эфирные связи в молекуле липидов. В результате триацилглицерид теряет остатки жирных кислот (вначале в α-, а затем в β положении). Высвобождающиеся жирные кислоты усиливают эмульгирование липидов. Всасываться могут негидролизованные жиры, но особенно интенсивно продукты их гидролиза. Около 3/4 липидов всасывается в виде моноацилгли-церидов и в малых количествах нераспавшиеся жиры.
Желчные кислоты образуют мицеллы с жирными кислотами и моноацил-глицеридами, что позволяет им проникнуть в клетки слизистой. В толще слизистой желчные кислоты высвобождаются, поступают в портальный кро-воток, с током крови в печень и затем секретируются в желчные капилляры. Это позволяет использовать их повторно. За сутки около 0,3 г желчных кислот, не всасываясь, теряется с калом. Потери восполняются за счет синтеза в печени.
Нарушения желчеобразования или поступления желчи в кишечник приводят к тому, что жиры выделяются в непереваренном или в частично переваренном виде с калом — стеаторея.
В клетках кишечника продукты переваривания жиров вступают в процесс ресинтеза, образуя липиды, свойственные данному организму. Ресинтезиро-ванный жир и отчасти продукты переваривания жира поступают в лимфатические капилляры и в небольшом количестве (до 15%) в капилляры портальной системы. Липиды нерастворимы в жидкостях организма, поэтому их транспорт кровью происходит только после включения в состав особых частиц — липопротеинов, где .роль солюбилизатора играют белки. Из четырех типов липопротеинов в кишечнике образуются два: хиломикроны и липопротеины очень низкой плотности (ЛПОНП). Эти образования называют транспортными формами липидов. Детальнее с ними познакомим вас позже. В составе транспортных форм липиды доставляются к органам и тканям.
3. Сформулируйте понятие «Антивитамины», принцип их классификации. Примеры. Назовите антивитамины, широко использующиеся в предупреждении внутрисосудистого тромбообразования. Охарактеризуйте механизм их действия. Стр 144
4.На чем основан принцип разделения альфа-аминокислот на глюко- и кетопластичные?
Билет 35
1. Классификация нарушений гемостаза.
2. Молекулярные механизмы влияния инсулина на метаболизм глюкозы, липидов и протеиногенез.
3. Протеолитические ферменты пищеварительного тракта, проферменты, их активация.
4. На каком основании полиненасыщенные жирные кислоты относят к витаминоподобным (витамин F) соединениям.
Билет 36
1. Две принципиальные группы превращений в печени, обеспечивающие детоксикацию.
2. Глюкагон. Механизм влияния глюкагона на метаболизм углеводов, липидов, белков.
3. Чем определяется кратковременность действия синаптического сигнала, большая длительность действия гормональных сигналов?
4. Типы пищевых жиров, их источники, суточная потребность в липидах.
Билет 37
 Регуляция осмотического давления во внеклеточной жидкости.
Объем внеклеточной жидкости подвергается наибольшим колебаниям. Его значение зависит:
1. От концентрации белков в плазме, особенно от количества альбумина, снижение его концентрации сопровождается уменьшением объема, рост — повышением.
2. От общего количества натрия в организме, который обусловливает задержку воды в количестве, достаточном для поддержания изотонического давления. Так, если прекратится поступление натрия с пищей и водой, почка ограничивает его выделение. При избыточном введении натрия с пищей почки задержат воду в объеме, необходимом для нормализации осмотического давления.
Зависимость между общим количеством натрия и объемом внеклеточного сегмента обеспечивается полипептидом, названным третьим фактором," или натрийуретическим гормоном. Этот гормон влияет непосредственно на реабсорбцию натрия в почечных канальцах.
2. Источники аммиака; пути обезвреживания: химизм процессов.
Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кровь системы воротной вены, здесь концентрация аммиака больше, чем в общем кровотоке.
Аммиак образуется в различных тканях. Концентрация его в крови незначительна, т.к. он является токсичным веществом (0,4 - 0,7мг/л). Особенно выраженное токсическое действие он оказывает на нервные клетки, поэтому значительное его повышение приводит к серьёзным нарушениям обменных процессов в нервной ткани.
  
ПУТИ ОБЕЗВРЕЖИВАНИЯ АММИАКА.
1.    образование АМИДОВ
ГЛУТАМИН и АСПАРАГИН - нетоксические вещества. Их называют транспортной формой аммиака   в   организме.   Они   не   проникают  через   мембраны   и   в   почках   распадаются   до аминокислот и аммиака.
2.         Восстановительное АМИНИРОВАНИЕ альфа – кетоглутаровой кислоты
    3.    Образование солей АММОНИЯ
    4.    Синтез мочевины - основной путь обезвреживания аммиака - ОРНИТИНОВЫЙ ЦИКл
АРГИНАЗА обладает абсолютной специфичностью и содержится только в печени. В составе мочевины содержится два атома азота: один поступает из аммиака, а другой выводится из АСП.
Образование мочевины идёт только в печени.
Две первые реакции цикла (образование ЦИТРУЛЛИНА и АРГИНИНОСУКЦИНАТА) идут в МИТОХОНДРИЯХ, остальные в цитоплазме.
В организме в сутки образуется 25г мочевины. Этот показатель характеризует мочевинообразовательную функцию печени. Мочевина из печени поступает в почки, где и выводится из организма, как конечный продукт азотистого обмена.
3. Опишите последовательность превращений 7-дегидрохолестерола в организме и его связь с обменом кальция.
7 –дегидрохолестерол – предшественник витамина Д (кальциферол)
7 – дегидрохолестерол под возд. УФ-лучи - > холекальциферол (вит Д3) -> в печень –гидроксилирование в 25 положении -> 25 гидроксихолекальциферол -> в транспорт в почки:
- >гидроксилируется в 1 -> 1, 25 дигидрооксихолекальциферол (активная форма – контролируется паратгормоном окощитовидной железы)
- > слизистая оболочка кишечника -> белок предшественник в кальций связывающий белок
- > ускоряется связывание ионов Са из просвета кишечника – ускоряется реабсорбция Са в почечных канальцах
4. Охарактеризуйте химическую природу гормонов коркового и мозгового вещества надпочечников, назовите основных представителей.
Мозговое вещество надпочечников продуцирует два катехоламина адреналин и норадреналин. Их образование проходит через следующие этапы: тирозин — диоксифенилаланин (ДОФА) — диоксифенилэтиламин (дофамин) — норадреналин — адреналин. У человека в мозговом веществе и плазме адреналина примерно в 3-10 раз больше, чем норадреналина. Главное место превращения гормонов — печень. Главный путь катаболизма: о-метилирование, затем окислительное дезаминирования и конъюгация. Метаболиты выводятся с мочой. Главные из них — З-метокси-4-оксиминдальная кислота и метанефрин.
Мишени катехоламинов — мышцы, печень, жировая ткань. Эффекты реализуются через аденилатциклазную систему и проявляются сдвигами в углеводном и липидном обменах.
Влияние адреналина на углеводный обмен — активация гликогенолиза в мышцах и печени. Это приводит к повышению гликемии и накоплению молочной кислоты в мышцах, к ускоренному потреблению кислорода.
Влияние норадреналина такое же по направленности, но менее выраженное.
Билет 39
 Регуляция объема внеклеточной жидкости.
2. Синтез высших жирных кислот.  Связь с метаболизмом углеводов. Регуляция синтеза.
3. Механизм мышечного сокращения. Энергообеспечение мышцы.
Сокращение мышцы — результат сокращения составляющих ее мышечных клеток (мышечных волокон). Сокращение мышечного волокна — следствие укорочения каждого его саркомера. Укорочение саркомера происходит в результате взаимодействия толстых и тонких филаментов, которые ориентированы параллельно длиннику мышцы. В саркомере покоящейся мышцы толстые и тонкие филаменты пространственно разобщены. Тонкие филаменты контактируют с 2-линиями и не достигают центральной части саркомера, оставляя ее свободной. Толстые филаменты занимают центр саркомера, не приходя в соприкосновение с 2-линиями. Только в Н-зоне, в пространстве между толстыми филаментами входят тонкие. Взаимодействие филаментов сводится к тому, что тонкие, прикрепленные к 2-линиям по обе стороны саркомера, движутся навстречу друг другу, внедряясь в пространство между толстыми. В результате уменьшается расстояние между 2-линиями, происходит их сближение или, что то же самое, укорочение длинника саркомера.
При максимальном сокращении толстые филаменты приходят в соприкосновение с 2-линиями.
4. Назовите биологически активные вещества, обеспечивающие регуляцию  обмена кальция.
Билет 40
1. Изобразить схему общих и частных путей метаболизма углеводов, липидов и белков. Указать стадии катаболизма и анаболизма.
2. Наиболее частые виды молекулярных нарушений обмена аминокислот. Энзимдефекты. стр.224
3. Креатин. Значение для организма. Синтез и дальнейшие превращения. Креатинурия.
4. По какому типу действия реализуют свой эффект в клетке  стероидные гормоны?
Ответ:
1)
2) Галактоземия может быть вызвана отсутствием одного из 3х ферментов, обеспечивающих ее вхождение в общий путь метаболизма углеводов.
 Распад глюкозы происходит в печени, ткани мозга и клетках крови и протекает через следующие реакции:
1) галактоза под воздействием галактокиназы превращается в галактозо-1-фосфат
2) галактозо-1-фосфат + АТФ под воздействием галактозо-1-фосфатуридинтрансферазы = УДФ-галактоза +АДФ
3) УДФ-галактоза под воздействием галактозо-УДФ-эпимеразы = УДФ-глюкоза
Соответственно из-за дефицита этих катализаторов и развивается это заболевание.
Дефицит галактокиназы проявляется ухудшением зрения, вызванным образованием катаракт. В моче обнаруживается галактоза и сахарный спирт.
Дефицит галактозо-1-фосфатуридинтрансферазы ведет к накоплению Г-1-Ф в кл. крови, печени, почках, мозге и хрусталике, к появлению в тканях сахарного спирта. Образуются катаракты. При кормлении галактозосдержащей пищей у ребенка развивается желтуха, диарея.
Эссенциальная фруктозурия обусловлена недостаточностью фосфофруктокиназы, которая катализирует превращение фруктозы в фруктозо-1-фосфат. Фруктоза накапливается в крови и выделяется с мочой. Клинические проявления отсутствуют.
Фруктозурию выявляют обычно при наличии гипергликемии и одновременном отсутствии в моче редуцирующих сахаров.
Наследственная непереносимость фруктозы проявляется вслед за введением в рацион ребенка фруктов или соков, содержащих фруктозу или ее источник сахарозу.
Заболевание связано с дефицитом фруктозо-1-фосфатальдолазы. Этот фермент катализирует расщепление фруктозо-1-фосфата до 3-ФГА, обеспечивая включение фруктозы в основной путь превращения глюкозы. В результате дефекта накапливается фруктозо-1-фосфат, развивается гипофосфатемия.
Важнейшие лабораторные признаки заболевания: фруктоземия, фруктозурия и фруктозо-1-фосфатурия, а также лактатемия, гиперурикемия и гипогликемия после нагрузки фруктозой.
Гликогенозы – это состояния, обусловленные энзимдефектом, который проявляется необычной структурой гликогена или его избыточным накоплением.
Описано 6 видов гликогенозов, различающиеся характером энзимдефекта.
Тип 1 (гликогеноз Гирке) – следствие дефицита глюкозо-6-фосфотазы. Встречается наиболее часто, проявляется гипогликемией, накоплением гликогена в печени и почках. Больные отличаются маленьким ростом.
Наиболее характерны биохимические сдвиги – снижено содержание глюкозы в крови, не повышается ее содержание при введении адреналина и глюкагона, гиперурикемия.
Тип 2 обусловлен дефектом кислой альфа-1,4-глюкозидазы. Проявляется генерализованным накоплением гликогена, протекающим поражением печени, почек и НС, гипертрофией миокарда. Это наряду с воспалением легких ведет к смерти.
По данным лабораторных исследований, нормогликемия, нормальная реакция на адреналин.
3)
4) По цитозольному механизму. Они способны проникать через мембрану в клетку и вступать в контакт с рецепторами, находящимися в цитозоле. В виде комплекса гормон-рецептор они перемещаются в ядро клетки, где избирательно влияют на активность геномов, изменяя доступность для транскрипции определенных матриц ДНК.
Билет 41
1.Индивидуальные белки сыворотки крови, их функции, содержание, диагностическое значение результатов лабораторного исследования. Белки острой фазы.
2. Врожденные нарушения обмена моносахаров (галактозы, фруктозы). Схемы превращений, энзимдефекты, биохимические сдвиги. Стр. 224
3. Источники аминокислот в организме. Пищевые белки, критерии их пищевой ценности. Суточная потребность в белке.
4. Какое вещество является предшественником простациклинов, тромбоксанов.
Ответ:
1)
2
3) В пищевых продуктах естественного происхождения свободных аминокислот крайне мало – они поступают в пищеварительный тракт в составе белков, и становится доступными всасыванию только после их переваривания.
Источники белка в питании человека – мясо, рыба, сыры, яйца, молоко.
Потребность в белке скалывается из потребности в общем азоте и незаменимых аминокислотах. На потребности в белке сказываются климатические условия, характер трудовой деятельности, возраст.
Пищевая ценность белка. Важный критерий пищевой ценности белков – доступность аминокислот и аминокислотный состав: чем выше содержание незаменимых аминокислот, чем полнее в пище их набор, чем выше пищевая ценность белка.
4) Линолевая кислота является предшественником простациклинов, тромбоксанов.
Билет 42
1. Коагуляционный гемостаз. Компоненты системы. Схема пламокоагуляции.
2. Переваривание липидов в желудочно-кишечном тракте. Липолитические ферменты, условия их функционирования. Ресинтез белков в кишечнике.
3. Нейрогормоны гипофиза, их органы-мишени  и эффекты.
4. Перечислите процессы, в которых участвует витамин С.
Ответ:
1)
2)
3) Вазопрессин – гормон нейрогипофиза, образуется в супраоптических и паравентрикулярных ядрах гипоталамуса из полипептидов-предшественников, мигрирует по аксонам гипоталамо-гипофизарного тракта в нейрогипофиз, накапливаясь в нем.  Секреция контролируется меланолиберином и меланостатином.
Мишени вазопрессина – артериолы и капилляры легочных и коронарных сосудов. Гормон вызывает их сужение, что сопровождается повышением артериального давления и связанным с этим расширением мозговых и почечных сосудов. Еще одна мишень – дистальные извитые канальцы и собирательные трубочки нефрона. Эффект реализуется через аденилатциклазную систему. Это проявляется активацией гиалуронидазы, усиленным расщеплением гиалуроновой кислоты и связанным с этим ростом проницаемости канальцевого эпителия.
В результате увеличения проницаемости ускоряется реабсорбция воды, что ведет к уменьшению объема конечной мочи.
При введении вазопрессина извне происходит уменьшение диуреза. Поэтому он называется антидиуретическим. Дефицит гормона – полиурия и полидипсия (увеличение жажды).   
Окситоцин – гормон нейрогипофиза. По месту образования не отличается от вазопрессина. Тем же путем поступает в нейрогипофиз, где и депонируется.
Органы-мишени – гладкая мускулатура кишечника, желчного пузыря и мочеточников, а также миометрий. Вызывает отделение молока.
4) Основная функция витамина С – донор водорода в ОВР. Участвует в превращениях ароматических кислот, ведущих к образованию некоторых медиаторов, в синтезе кортикостероидов, в кроветворении и в формировании коллагена. Кроме того участвует в обмене железа: в кишечнике обеспечивает восстановление 3валентного в 2валентное – это обязательное условие всасывания железа.
Билет 43
1. Понятие о метаболизме и его значении. Катаболические, анаболические и амфиболические пути в обмене веществ, их  взаимосвязь (пояснить на конкретном примере).
2. Пентозофосфатный путь: субстрат, ключевые ферменты. Две основные ветви процесса. Роль тиамина. Биологическое значение.
3. Гормоны. Мембранно-внутриклеточный тип действия. Посредники передачи сигнала в клетку (пояснить на конкретном примере).
4. Чем обусловлена растворимость белков?
Ответы:
1)
2) Пентозофосфатный путь превращения глюкозы представлен двумя последовательными ветвями — окислительной и неокислительной. Биологический смысл ПФП определяется следующим:
1 В результате превращений в окислительной ветви образуется 2 молекулы НАДФ • Н^ В отличие от НАД • Н„ НАДФ • Н не окисляется дыхательной цепью, а служит источником водорода и электронов при синтезах, включающих реакции восстановления.
2 В результате превращений в неокислительной ветви генерируется рибозо-5-фосфат. Этот углевод и его производные используются для синтеза важных биологических молекул- РНК и ДНК, АТФ, КоА. НАД и ФАД
3. Как следует из реакций 3 и 4 (табл. 5), рибулезо-5-фосфат может использоваться как для образования 2-й молекулы НАДФ • Нд (реакция 3), так и для образования рибозо-5-фосфата (реакция 4). Если потребность в НАДФ • Нд для восстановительных синтезов выше, чем потребность в рибозо-5-фосфате для синтеза РНК и ДНК, то окислительная ветвь работает интенсивно (синтез НАДФ • Нд). а избыток образующегося рибозо-5-фосфата (реакция 4) расходуется на образование 3-ФГА (реакции б и 8). Эти три реакции катализируются транскетолазой и трансальдолазой, которые таким образом обеспечивают связь между ПФП и основным путем превращения углеводов, его промежуточный продукт — 3-ФГА.
Обращаем внимание на то, что кофактор транскетолазы — тиаминдифосфат (ТДФ) — коферментная форма витамина В^ (тиамина). При нарушении способности белковой части транскетолазы связывать ТДФ или при недостатке тиамина в рационе развивается тяжелое нервно-психическое расстройство — синдром Вернике-Корсакова.
3) Гормоны – это БАВ, выделяемые железами внутренней секреции в кровь или лимфу и оказывающие регуляторное влияние на метаболизм клетки.
Для них характерно:
- дистантность действия
- высокая специфичность
- высокая скорость образования и инактивации
- высокая биологическая активность
- роль посредника в передаче информации от нервной системе к клетке
Классификация:
1- белково-пептидной природы (ФСГ, ЛГ, инсулин, глюкагон, вазопрессин)
2- производные аминокислот (тироксин, мелатонин)
3- стероидной природы (половые гормоны)
В зависимости от того, где в клетке происходит передача информации, выделяют варианты действия гормонов:
1-мембранный
2- мембранно-внутриклеточный
3- цитозольный
Мембранно-внутриклеточное действие гормонов характеризуется тем, что гормон, не проникая в клетку, влияет на обмен в ней через вторичный посредник. Сам гормон – первичный посредник.
Описаны 3 группы вторичных посредников: циклические нуклеотиды, ионы кальция и 2,5-олигоадениловый нуклеотид.
1) Регуляция через цАМФ и цГМФ. В цитоплазматическую мембрану кл. встроен фермент аденилатциклаза. Передача информации, источник которой гормон, происходит следующим образом:
- гормон связывается с рецептором
- комплекс гормон – рецептор взаимодействует с сопрягающей частью аденилатциклазы, изменяя ее конфигурацию
- изменение конфигурации приводит к тому, что ГДФ, присутствующая в неактивном белке, превращается в ГТФ
- комплекс белок-ГТФ активирует аденилатциклазу
- она вырабатывает цАМФ внутри клетки
Тоже самое и с цГМФ. А далее циклические нуклеотиды активируют киназы, активированные протеинкиназы фосфорилируют за счет АТФ разные белки, это сопровождается изменением функциональной активности белка.
Например, адреналин может связываться вета- и альфа-рецеторами. Первые включают аденилатциклазу и образование цАМФ, вторые – гуанилатциклазу и образование цГМФ.
2) 2,5-олиго-адениловый нуклеотид как внутриклеточный посредник эффекта гормонов мало изучен.
3) Ионы кальция. Внутриклеточное содержание кальция незначительно. Он поступает из внешней среды по 2м кальциевым в мембране.  Откачивание кальция из кл. осуществляется кальций-АТФаза в обмен на ионы натрия, поступающие извне. Кальций взаимодействует с белком кальмодуином.
Это происходит следующим образом:
- гормон связывается с мембранным рецептором
- ионы кальция поступают в цитоплазму и образуют регуляторный комплекс с кальмодулином
- комплекс Са-кальмодулин изменяет активность ферментов
- изменение активности ферментов ведет к изменению функций клетки
 
4) Растворимость зависит от рН раствора, природы растворителя, концентрации электролита, т.е. от ионной силы, и от структуры данного белка. Хорошо растворимы глобулярные белки, хуже – фибриллярные.
При низкой ионной силе ионы повышают растворимость белка. При высокой ионной силе ионы способствуют осаждению белков, так называемое - высаливание белков.
Билет 44
1. Общие и частные пути метаболизма углеводов, липидов и аминокислот. Взаимосвязь.
2. Нарушения обмена билирубина. Желтухи: виды, дифференциальная диагностика по пигментному спектру крови и мочи.
3. Гормон роста. Химическая природа. Место и регуляция продукции. Органы мишени. Биохимические эффекты.
4.Назовите основные пищевые углеводы. Суточная потребность в углеводах.
Билет 45
1. Обмен информацией между клетками. Пути передачи информации. Сигнальные молекулы.
2. Высшие жирные кислоты: источники свободных жирных кислот в крови, значение ВЖК. Бета-окисление: химизм, локализация процесса в клетке, связь с тканевым дыханием, энергетический эффект.
3. Биотин. Важнейшие источники. Процессы, в которых он участвует в составе ферментов, Возможные причины гиповитаминоза. Биохимические сдвиги при недостаточности.
4. Назовите пути использования холестерола в клетке.
Ответ:
1)
2) 29. 96
3) Биотин это витамин Н. Синтезируется микрофлорой кишечника, поэтому недостаточность его может быть вызвана отсутствием его в рационе. Содержится в дрожжах, печени. Авидин яичного белка тормозит всасывание биотина, его введение в большом количестве может вызвать дефицит витамина Н, то же можно спровоцировать назначением лекарственных средств, стерилизующих кишечный тракт.
Выводится с мочой в количестве, превышающим его поступление с пищей.
Биотин – простетическая группа ферментов, которые катализируют включение СО2 в органические соединения: ацетил-КоА-карбоксилазы и пируваткарбоксилазы. При дефиците биотина способность тканей включать СО2 в оксалоацетат и синтезировать ВЖК падает.
4) Холестерол (холестерин) – это природный жирный спирт, который играет важную роль в жизни организма. Он является структурным компонентом клеточных мембран, предшественником в синтезе др. стероидов (гормонов, витамина Д, желчных кислот).
Билет 46
1. Окисление глюкозы по основному и анаэробному путям: химизм, энергетический эффекты, механизмы образования АТФ.
2. Биологические мембраны. Динамическая модель (состав, структура, свойства, функции).
3. Тироксин. Химическая природа, синтез, место и регуляция продукции. Органы-мишени. Механизмы влияния на метаболизм, эффекты.
4. Назовите  важнейшие источники и условия всасывания витамина В12.  На каком основании витамин  В12 можно отнести к липотропным факторам?
Ответ:
1)
2) Главные составные компоненты мембран – липиды и белки. Наряду с этим мембраны содержат углеводные компоненты, которые связаны с липидами и белками.
Мембрана – это плоское образование. Основу ее составляет липидный слой (бимолекулярный слой), образованный фосфолипидами и гликолипидами. Молекула липида представляет собой образование, в котором можно выделить гидрофобную часть – углеводный радикал, и гидрофильную головку.
В водной среде липиды практически нерастворимы. Молекулы этих соединений сливаются гидрофобными компонентами, которые как бы выталкиваются из воды и обращают к воде гидрофильные головки.
Особое место в мембране занимает холестерол. Он отличается слабо выраженными афильными свойствами, так как его молекула имеет вытянутую форму и содержит небольшую гидрофильную группу. В мембранах молекулы холестерола почти полностью погружены в гидрофобную часть бислоя, а гидрофильная головка примыкает к гидрофильным головкам молекул фосфолипидов.
Двуслойная липидная мембрана практически не проницаема для ионов и большинства полярных молекул. Искл. вода.
В мембранах еще имеются белки. Мембраны, выполняющие разные функции, различаются по белковому составу. Различают периферические и интегральные белки. Периферические белки связаны мембранами водородными и электростатическими связями. Интегральные белки пронизывают мембрану.
Белки обеспечивают свойства мембран:
1- транспорт веществ
2- преобразование энергии
3- коммуникацию, связь клетки с окружением
4- специфические функции, например восприятие света
3) Тироксин – это йодсодержащий гормон щитовидной железы. Это йодированные производные аминокислоты тирозина, Биосинтез тироксина происходит в фолликулах щитовидной железы путем конденсации двух остатков молекул дийодтирозина, входящих в состав тиреоглобулина.
Тироксин в основном циркулирует в крови в связанном с белками виде, и лишь небольшая его часть находится в свободном состоянии, обеспечивая влияние на органы и ткани.
Эффекты тиреоидных гормонов реализуются по мембранно-внутриклеточному и цитозольному механизму и проявляются в виде ряда специфических изменений в клетке-мишени:
а) калоригенный эффект, проявляется повышением потребления кислорода с повышенным теплообразованием
б) стимуляция синтеза белка, а, следовательно, и дифференцировки тканей реализуется через ускорение некоторых этапов трансляции.
Тироксин обладает многообразным физиологическим действием: он необходим для нормального роста, развития и дифференциации тканей, стимулирует сердечную деятельность, азотистый, углеводный и жировой обмен, проведение нервных импульсов, усиливает поглощение кислорода тканями и их теплопродукцию.
Биосинтез и секреция тироксина находятся под контролем гипофиза и гипоталамуса. Нарушение секреции тироксина приводит к тяжелым эндокринным заболеваниям: недостаток тироксина - к кретинизму, микседеме, избыток - к тиреотоксикозу, или базедовой болезни.
4) Витамин В12 – кобаламин или антианемический фактор. Содержится в дрожжах, молоке, печени, почка. Растительная пища бедна этим соединением. Синтезируется кишечными м.о.
Всасывание кобаламина обеспечивается внутренним фактором – белком, который синтезируется клетками слизистой желудка. По природе это мукопротеид (гастромукопротеид), моль которого связывает моль кобаламина.  
Комплекс гастромукопротеид-кобаламин всасывается клетками слизистой кишечника, проникает в портальный кровоток и отдает кобаламин др. белку – транскобаламину I. После выхода в общий кровоток кобаламин транспортируется др. белком – транскобаламином II. Выводится кобаламин с мочой.
На каком основании витамин  В12 можно отнести к липотропным факторам?
Витамин В12 и фолиевая кислота известны как антианемические, влияющие на процессы кровообразования. Кроме этого своего основного действия, они обладают и липотропными свойствами. Дело в том, что активной частью всех липотропных веществ являются имеющиеся в их составе метильные группы. Особую ценность представляют так называемые лабильные, то есть легко отделяющиеся, метильные группы. Витамин В12 и фолиевая кислота способствуют отделению этих групп и стимулируют образование метионина и холина. Под влиянием витамина B12 и фолиевой кислоты организм обогащается метильными группами за счет метионина, белка, творога и других продуктов.
Билет 47
1. Роль гипоталамуса в во взаимодействии нервной и эндокринной систем. Либерины, статины, регуляция их продукции и их функции. Представители. Органы мишени, эффекты.
2. Важнейшие фосфолипиды. Их химическая структура, свойства, биологическое значение. Биосинтез: химизм, лимитирующие факторы синтеза (липотропные факторы), возможные биохимические нарушения при их недостаточности.
3. Понятие об азотистом балансе, как основе для установления потребности в белке. Виды азотистого баланса. Понятие «коэффициент изнашивания». Суточная потребность в белке.
4. Назовите витамины и их коферментные формы, участвующие в тканевом дыхании.
Ответ:
1) Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться тогда, когда из гипоталамуса были выделены первые гуморальные факторы, оказавшиеся гормональными веществами с чрезвычайно высокой биологической активностью.
Эти вещества образуются в нервных клетках гипоталамуса, откуда по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение.
Эти вещества получили наименование рилизинг-факторов или либеринов. 
Вещества с противоположным действием, т.е. угнетающие освобождение  гипофизарных гормонов, стали называть ингибирующими факторами, или статинами. Органом-мишенью этих гормонов является аденогипофиз.
Таким образом, гормонам гипоталамуса принадлежит ключевая роль в физиологической системе гормональной регуляции многосторонних биологических функций отдельных органов, тканей и целостного организма.
2) К этому классу сложных липидов относится глицерофосфолипиды и сфинголипиды. Глицерофосфолипиды явялются производными фосфатидной кислоты: в их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Характерно, что одна часть их молекулы обнаруживает  резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду одного из радикалов. Существует несколько подклассов: фосфатидилхолины, фосфотидилэтаноламины, фосфатидиламины, фосфатидилсерины и др.Сфингомиелины являются наиболее распространёнными сфинголипидами. Находятся в мембране животных и растительных клеток. Особенна богата ими нервная ткань, обнаружены в почках, печени и других органов. При гидролизе они образуют одну молекулу жирной кислоты, одну молекулу ненасыщенного аминоспирта сфингозина, одну молекулу азотистого основания.
Синтез локализован главным образом в эндоплазматичеческой сети клетки. Сначала фосфатидная кислота в результате обратимой реакции с цитидинтрифосфатом (ЦТФ) превращается в цитидинфосфат-диглицерида (ЦДФ-диглицерид). Затем в последующих реакциях, каждая из которых катализируется соответствующим ферментом, цитидинмонофосфат вытесняется из молекулы ЦДФ-диглицеида одним из двух соединений – серином или инозитом, образуя фосфатидилсерин или фосфатидилинозит, или 3-фосфатидил-глицерол-1-фосфат. В свою очередь фосфатидилсерин может декарбоксилироваться с образованием фосфатидилэтаноламина, который является предшественником фосфатидилхолина. В результате последовательного переноса трех метильных групп от трёх молекул S-аденозилметионина к аминогруппе остатка этаноламина образуется фосфатидилхолин. Существует ещё один путь синтеза фосфатидилэтаноламина и фосфатидилхолина в клетках животных. В этом пути также используется ЦТФ в качестве переносчика, но не фосфатидной кислоты, а фосфорилхолина или фосфорилэтаноламина.
3)
4) В тканевом дыхании участвуют витамины группы В.
В1-тиамин. Коферментная форма – ТДФ;
В2-рибофлавит. К.Ф. – ФМН и ФАД.
В3-пантотеновая кислота. К.Ф. – КоА.
В5-никотиновая кислота. К.Ф. – НАД, НАДФ.
В6-пиридоксаль. К.Ф. – фосфоперидоксаль.
В12-кобаламин. К.Ф. – метил-кобаламин.
Билет 48
1. Инсулин. Химическая природа. Место и регуляция продукции. Органы мишени, его роль в регуляции метаболизма (указать ферменты, активность которых регулируется гормоном). Биохимические сдвиги при сахарном диабете.
2. Биогенные амины. Представители и их образование, значение в организме.
3. Витамин Д: важнейшие источники, образование активной формы; процессы, в которых он участвует; возможные причины гиповитаминоза; биохимические сдвиги при гиповитаминозе.
4. Охарактеризуйте механизм первично-активного транспорта.
Ответ:
1) Инсулин -  глобулярный белок. Секретируется бета-клетками поджелудочной железы.
Секрецию инсулина усиливают глюкоза и ионы кальция, аргинин и лейцин. Контролирует секрецию инсулина соматотропин и соматостатин.
В кровоток инсулин поступает в свободной или связанной формах. Мишени свободного инсулина – мышечная и соединительная ткани (исключение жировая ткань), связанного – только жировая. В меньшей степени чувствительна к инсулину ткань печени и совсем нечувствительна нервная ткань.
Эффект гормона реализуется по мембранному типу – комплекс инсулин-рецептор повышает проницаемость клеточных мембран для глюкозы, аминокислот, ионов кальция и натрия. Особенно сильно под влиянием инсулина ускоряется транспорт глюкозы. Это объясняется так:
а) инсулин взаимодействует с белками, формирующими глюкозные каналы, и вызывает такое изменение их конфигурации, которое обеспечивает прохождение глюкозы.
б) инсулин осуществляет тот же эффект через аденилатциклазную систему.
Внутриклеточные эффекты инсулина реализуются по мембранно-внутриклеточному механизму – инсулин облегчает проникновение ионов кальция. Это увеличивает активность гуанилатциклазы и ведет к ускоренному синтезу цГМФ. Одновременно ионы кальция активируют фосфодиэстеразу, расщепляющую цАМФ.
Через накопление цГМФ и ионов кальция инсулин влияет на репликацию, ускоряя синтез ДНК и РНК, что ведет к усилению синтеза белка, а, следовательно, к ускорению роста и дифференциации клеток.
Метаболическое значение инсулина:
 инсулин в тканях активирует – транспорт в кл. глюкозы, аминокислот, калия и кальция; превращения глюкозы по основному пути на стадии фосфорилирования и на этапе ЦТК; синтез гликогена и протеиногенез.
 инсулин тормозит – гликогенолиз и глюконеогенез; липолиз, синтез кетоновых тел и синтез холестерола; протеолиз и обмен аминокислот, образование мочевины.
Важны 3 момента:
1) инсулин активирует процессы, ведущие к снижению содержания свободной глюкозы
2) он тормозит процессы, повышающие содержание глюкозы, замедляет глюконеогенез; в связи с этими свойствами при дефиците инсулина наблюдается повышение глюкозы в крови – гипергликемия, а при введении извне – гипогликемия.
3) инсулин активирует синтез белка и липидов и тормозит их распад. Следовательно, при дефиците инсулина протеолиз повышается, что сопровождается избыточным высвобождением аминокислот, продукты, превращения которых используются в глюконеогенезе и служат дополнительным источником глюкозы. Это ведет к увеличению образования аммиака и мочевины. Одновременно усиление липолиза и повышение содержания СЖК способствует усиленному образованию кетоновых тел и холестерола.
Эти изменения лежат в основе биохимических сдвигов, характерных для заболеваний, связанных с дефицитом инсулина или недостаточностью инсулинчувствительных  рецепторов в тканях, т.е. в основе сахарного диабета.
2) Амины – это продукты декарбоксилирования, они обладают высокой биологической активностью. С этим и связано их название – биогенные амины. К этой группе соединений принадлежат многие медиаторы. Важнейшие из них:
Гамма-аминомасляная кислота образуется в результате декарбоксилирования глутаминовой кислоты, катализируемого глутаминдекарбоксилазой, кофермент которой фосфоперидоксаль. Основное место образования – ткань головного мозга, главный тормозной медиатор в НС.
Гистамин – продукт декарбоксилирования гистамина, катализируемого специфической декарбоксилазой, которая, распространена в тучных клетках (главное место образования гистамина). В слизистой желудка гистамин действует активирующее на секрецию пепсиногена соляной кислоты. В больших количествах высвобождается из депо при травматическом шоке, а также в зоне воспаления. Это сильный сосудорасширяющий агент, способный вызвать гистаминовый шок, и медиатор аллергических реакций.
Серотонин – образуется в результате гидроксилирования триптофана. Образуется нейронами гипоталамуса и ствола мозга. Это сильный сосудосуживающий агент и фактор, повышающий свертываемость крови.
Дофамин – производное тирозина. Под действием тирозиназы тирозин гидроксилируется в положении С-3, превращаясь в ДОФА. Он карбоксилируется декарбоксилазой ароматических аминокислот, превращаясь в дофамин. Дофамин – это медиатор ингибирующего типа одного из крупных проводящих систем путей.
Таурин – амин, образующийся из цистина. Синтезируется во многих органах и тканях. Выполняет медиаторную функцию на уровне синапсов.
Норадреналин образуется из дофамина. Он выполняет роль медиатора в постганглионарных волокнах симпатической нервной системы, активирует связанную  с мембраной аденилатциклазу. Это приводит к накоплению цАМФ и активации киназы, изменяет активность ферментов.
Адреналин – продукт N-метилирования норадреналина фенилэтаноламин-N-метилтрансферазой. Адреналин запускает механизм расщепления гликогена и липолиз. Адреналин и норадреналин – гормоны надпочечников.  
3) Витами Д – кальциферол, антирахитический фактор. С пищей (печень, сливочное масло, молоко, рыбий жир) поступает в виде предшественников. Основной из них – 7-дегидрохолестерол, который после воздействия УФ в коже превращается в холекальциферол (витамин Д3). Витамин Д3 транспортируется в печень, где происходит его гидроксилирование в позиции 25 – образуется 25-гидрооксихолекальциферол. Этот продукт транспортируется в почки и там гидроксилируется в активную форму.  Появление активной формы холекальциферола в почке контролируется паратгормоном околощитовидных желез.
Поступая в слизистую кишечника с током крови активная форма витамина обуславливает превращение белка-предшественника в кальцийсвязывающий белок, который ускоряет всасывание ионов кальция из просвета кишечника. Сходным образом ускоряется реабсорбция кальция в почечных канальцах.
Недостаточность может наблюдаться при дефиците витамина Д в пище, недостаточном солнечном облучении, заболеваниях почек и недостаточной продукции паратгормона.
При дефиците витамина Д снижается содержание кальция и фосфора в костной ткани. В итоге – деформация скелета – рахитические четки, Х-образные голени, птичья грудная клетка. Заболевание у детей – рахит.
4) Активный транспорт – транспорт веществ против градиента концентрации – сопряжен с расходом энергии. Если источник энергии АТФ – это первично-активный транспорт.
Пример – натриевый насос, локализованный в плазматической мембране. Он переносит ионы натрия и калия через мембрану против градиента концентрации за счет энергии АТФ.
Билет 49
1. Основные положения биоэнергетики. Сходство и различие в получении и использовании энергии ауто- и гетеротрофными организмами, связь между ними. Роль АТФ в клетке.
2. Регуляция обмена липидов. Роль гормонов, ВЖК, метаболитов. Метаболизм липидов при стресс-воздействиях, зависимость от длительности стрессорного сдвига (увеличение продукции адреналина и глюкокортикоидов соответственно).
3. Фолиевая кислота: альтернативные названия, основные источники, коферментная форма, биохимические процессы, в которых она участвует; возможные  причины гиповитаминоза; Биохимические сдвиги при гиповитаминозе.  
4.Определите понятие «кофермент».
Ответ:
1) 1. Первая фаза тканевого дыхания, сопровождающаяся образованием CO2, не требует участия кислорода воздуха и осуществляется анаэробно
2. Важнейшая роль в осуществлении начальной анаэробной фазы дыхания играет не соединения, активирующие кислород, а специфические дегидрогеназы, катализирующие отщепление водорода от окисляемых субстратов.
3. Первичным акцептором атомов водорода, отщепляемых от окисляемых субстратов дегидрогеназами, являются особые термостабильные вещества – хромогены
4. Поглощаемый при тканевом дыхании кислород воздуха играет лишь роль конечного акцептора водорода.
Кроме того важной особенностью биологического окисления является то, что оно протекает постепенно, через многочисленные промежуточные ферментативные стадии, происходит многочисленные промежуточные ферментативные реакции.
Всё многообразие живых организмов на Земле по превращению энергии можно разделить на аутотрофов и гетеротрофов. Аутотрофы – способны непосредственно использовать энергию солнца, в процессе фотосинтеза создавать органические соединения из неорганических. Гетеротрофы ассимилируют уже готовые органические соединения, используя их как источник энергии или пластического материала для построения своего тела.
2) При физиологических условиях депонирование липидов и их мобилизация, а следовательно, синтез и распад жирных кислот протекают с примерно одинаковыми скоростями, уравновешивая друг друга, что сопровождается периодическим преобладанием противоположно направленных процессов.
При ограниченном потреблении углеводов с пищей или нарушении Их использования (дефицит инсулина) усиливаются мобилизация жирных кислот и их транспорт кровью в печень. В этом случае снижается скорость потребления ацетил-КоА по двум путям: вовлечение в ЦТК и для синтеза жирных кислот в печени.
В итоге больше ацетил-КоА направляется на синтез ацето-ацетил-КоА, который используется для образования кетоновых тел и синтеза холестерола.
Кетоновые тела — это ацетоуксусная, (β-оксимасляная кислоты и ацетон. Количество их в условиях нормы невелико. При углеводном голодании их содержание может существенно повышаться, вплоть до появления запаха ацетона в выдыхаемом воздухе. Это состояние носит название кетоз. Причины кетоза — любые состояния, затрудняющие использование углеводов: ограничение в питании, нарушения всасывания углеводов, сахарный диабет, интенсивная мышечная нагрузка
При достаточном поступлении углеводов с пищей и нормальном поступлении глюкозы в клетки, обеспечиваемом инсулином, увеличивается содержание метаболитов ЦТК. Два из них (цитрат и изоцитрат) стимулируют ацетил-КоА-карбоксилазу, которая катализирует образование малонил-КоА — первого продукта на пути синтеза жирных кислот. Следовательно, ускорится и синтез последних. Накопление ацетил-КоА тормозит декарбоксилирование пирувата. В связи с этим повышается использование глюкозо-6-фосфата по пентозофосфатному пути, а это ведет к накоплению НАДФН2 необходимого для синтеза липидов.
В норме пополнение и расходование липидов изменяются таким образом, что периодически один из процессов преобладает над другим и это обеспечивает гомеостаз липидов.
В итоге можно сделать вывод о том, что избыточное поступление углеводов с пищей, не компенсируемое энерготратами, может сопровождаться чрезмерным накоплением липидов. Недостаточное поступление углеводов с пищей или не компенсируемые углеводами энерготраты, а также нарушения потребления глюкозы клетками (диабет сахарный) сопровождаются мобилизцией липидов и появлением кетоза.
3) Фолиевая кислота – витамин В9. Содержится в продуктах растительного (салаты, капуста) и животного происхождения.
Коферментные формы представлены формилпроизводными и метенилпроизводными тетрагидрофолиевой кислоты. Они способны к взаимопревращениям и передаче метила от одной коферментной формы к др., включая его в реакции синтеза пуринов и пиримидинов.
Недостаточность фолиевой кислоты – результат нарушения всасывания. Сопровождается развитием мегалобластической анемии, обусловленной нарушением биосинтеза пуриновых и пиримидиновых оснований, что вызывает угнетение синтеза ДНК и пролиферации кроветворных клеток.
4) Кофермент - небелковая часть молекулы фермента
Билет 50
1. Цикл трикарбоновых кислот. Альтернативные названия. Химизм. Связь с тканевым дыханием. Аллостерические механизмы регуляции цикла. Энергетическимй эффект. Механизм интеграции с обменом белков, жиров и углеводов. Значение.
2. Метаболизм гликогена: химизм, локализация, регуляция, биологическое значение.
3. Витамин К: источники, коферментная форма (если известна); процессы  в которых он участвует, возможные причины гиповитаминоза; биохимические сдвиги при гиповитаминозе.
4. Назовите представителей соединений, относящихся к липидам, и их роль в организме.
Ответ:
1) 79
2) Гликоген — депонированная форма глюкозы, высвобождает эту гексозу при участии гликогенфосфорилазы. Фермент катализирует фосфоролиз (расщепление с присоединением компонентов фосфорной кислоты) 1,4-гликозидной связи, с высвобождением остатков глюкозы в виде глюкозо-1-фосфата (Г-1-Ф), который под действием фосфоглюкомутазы превращается в Г-6-Ф. Его возможные пути превращения"
1) в мышцах, где нет глюкозо-6-фосфатазы, по основному пути (аэробному или анаэробному);
2) в жировой ткани и других, где идут интенсивные восстановительные синтезы, по пентозофосфатному пути (для накопления НАДФ • Нд);
3) в печени, где много глюкозо-6-фосфатазы, расщепляется на глюкозу и фосфат, глюкоза поступает в кровь.
Таким образом, гликоген выполняет функцию источника глюкозы крови или источника субстрата ПФП и аэробного превращения.
Синтезируется гликоген за счет глюкозо-1-фосфата, который, взаимодействуя с УТФ, образует УДФ-глюкозу (см. стр.87).
УДФ-глюкоза выполняет роль донатора остатков глюкозы, акцептором которых являются олигосахариды"
УДФ-глюкоза + (Глюкоза)п ———>> УДФ + (Глюкоза)п+1. Катализирует эту реакцию гликогенеинтетаза — фермент обеспечивает образование линейных участков гликогена. Образование ветвлений обеспечивает фермент — амило-1,4-1,6-гликозилтрансфераза.
Метаболизм галактозы и фруктозы
Галактоза и фруктоза вступают на путь гликолиза, преобразуясь в метаболиты этого процесса
Галактоза + АТФ ———'• Галактозо-1-фосфат + АДФ   (катализатор — галактокиназа)
Затем следует обменная реакция, катализируемая галактозо-1-фосфат-уридилтрансфераэой'
Галактозо-1-фосфат + УДФ ———- УДФ-галактоза + фосфат
Далее галактоза в составе УДФ под действием эпимеразы (УДФ-галактозо-4-эпимераза) меняет конфигурацию ОН-группы при С-4, инвертируется в глюкозо-1-фосфат, освобождаясь одновременно от УДФ'
эпимераза Галактозо-1-УДФ ————————> Глюкозо-1 -фосфат + УДФ
Фруктоза в печени превращается по фруктозо-1-фосфатному пути:
(реакция двустадийная, катализирует ее фрукто-1-фосфатальдолаза и триозокиназа).
В жировой ткани фруктоза может метаболизировать непосредственно в фруктозо-6-фосфат — промежуточный продукт основного пути окисления глюкозы
3) Витамин К – антигеморрагический фактор. Поступает в организм с растительной (капуста, фрукты) и животной (печень) пищей, а также стимулируется микрофлорой кишечника.
Существует 2 ряда витамина К – филлохиноны К1-ряда и менахиноны – витамины К2-ряда. Первые содержатся в растениях, вторые синтезируются кишечными бактериями.
Функционирует в качестве кофактора карбоксилирования остатков глутаминовой кислоты в некоторых белках свертывания крови. Витамин К участвует в активации факторов свертывания крови.
Причина недостаточности вызвана нарушением образования его в кишечнике, или нарушением всасывания.
Признаки авитаминоза – нарушение свертывающей системы крови, а значит сильные кровотечения.
4)
Билет 51
1. Коллаген. Особенности аминокислотного состава и структурной организации молекулы. Предшественник и  его трансформация в коллаген.  Значение витамина С. Особенности метаболизма. Основные функции.
2. Кетоновые тела: определение понятия, представители, механизм их образования в норме. Значение. Причины кетонемии (кетонурии): условия, механизмы активации образования кетоновых тел, возможные последствия.
3.  Альдостерон, вазопрессин: место и регуляция секреции. Органы - мишени. Биохимические эффекты.
4. Назовите основные пищевые углеводы.
Ответ:
1) Коллаген – фибриллярный белок межклеточного матрикса. Молекула коллагена включает 3 пептидные цепи аминокислотных остатков: больше всего приходится на  глицин, меньше на пролин и гидроксипролин, и меньше всего на аланин. Кроме того в составе коллагена имеется оксилизин.
Пептидные цепи коллагена образованы последовательностью триплетов Гли-X-Y, где X и Y аминокислоты, чаще пролин и оксилизин.
Каждая из 3х полипептидных цепей молекулы коллагена спиралевидна. Из этих 3х спиралей образуется плотная спираль второго порядка, в которой цепи расположены параллельно. За счет пептидных групп между спиралями возникают водородные связи.
В Состав коллагена входят моносахариды и дисахариды, связанные через гидроксильные группы остатков оксилизина.
Трехцепочные молекулы коллагена, соединяясь, образуют микрофибриллы. Из них происходят более толстые фибриллы, а из них – волокна, а затем пучки волокон. За счет взаимодействия остатков оксилизина между молекулами коллагена в фибриллах возникают ковалентные связи.
Основные продуценты коллагена – фибриллы. Синтез коллагена включает наряду со стадией трансляции этап протрансляционной модификации, ведущей к образованию проколлагена (предшественник) из полипептидных цепей и образование коллагеновых волокон.
Гидроксилирование пролиновых и лизиновых остатков в полипептидных цепях проколлагена происходит одновременно со сборкой цепей. В этом процессе участвует молекулярный кислород и альфа-кетоглуторат, а в качестве кофактора – двувалентное железо и аскорбиновая кислота в роли восстановителя, обеспечивающего сохранение железа в 2валентном состоянии. 
Гидроксилирование – это обязательный этап трансформации проколлагена, обеспечивающий образование трехспиральной структуры коллагена.
Дефицит аскорбиновой кислоты проявляется главным образом за счет нарушения этого процесса и его следствие – разрыхленная соединительная ткань.
2) Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят b-оксимасляную и ацетоуксусную кислоты и ацетон. Количество их в условиях нормы невелико.
Появление повышенных количеств К. т. в крови и моче является важным диагностическим признаком, свидетельствующим о нарушении углеводного и жирового обменов.
Главным путем синтеза К. т., происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при b-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Этот путь синтеза К. т. более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ.
Из печени К. т. поступают в кровь и с нею во все остальные органы и ткани, где они включаются в цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. К. т. используются также для синтезахолестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот.
Кетонемия (кетоновые тела в крови) может наступить в результате усиленного, но недостаточно полного окисления жирных кислот, что в большинстве случаев связано с уменьшением в организме запасов углеводов. Обнаружение кетоновых тел в общем анализе мочи называют - кетонурия. В норме кетоновые тела в моче не обнаруживаются, так как ежедневно выводятся из организма органами выделения. 
 К причинам накапливания в моче кетоновых тел относятся многие причины, некоторые из них несут угрозу нормальной жизнедеятельности организма. Вот одни из причин:
 длительное голодание организма;
 общее переохлаждение;
 физические перегрузки;
 беременность;
 чрезмерное употребление белков с пищей;
 грипп;
 анемия;
 рак и другие заболевания.
При голодании в крови падает концентрация глюкозы, а при диабете глюкоза не поступает в клетку с необходимой скоростью. В результате начинается усиленный липолиз для высвобождения необходимой энергии. Мобилизованные жировые кислоты направляются из жировых депо в печень, где и образуются кетоновые тела. Пока их количество в пределах нормы, периферические ткани успевают произвести их окисление и получить, таким образом, недостающую энергию. При превышении нормы скорости окисления не хватает, и кетоны накапливаются в кровотоке.
    При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, т.к. все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез К. т.
Введение с пищей углеводов тормозит образование К. т. Инсулин стимулирует синтез жирных кислот из ацетил-КоА и активирует использование последнего в цикле трикарбоновых кислот, в результате чего снижается интенсивность синтеза К. т.
При обнаружении кетоновых тел в моче при сахарном диабете, медики говорят о переходе заболевания в более тяжелую стадию. Очень большое содержание в моче ацетона и уксусной кислоты при сахарном диабете, свидетельствует о приближении состояния гипергликемической комы у больного.
 
3) Альдостерон - наиболее активный минералокортикостероид, синтезирующийся в коре надпочечников из холестерола. Его мишени – клетки эпителия дистальных канальцев нефрона. Он как липофильное соединение проникает в ядра этих клеток и активирует транскрипцию генов, содержащих информацию о структуре натрий-транспортных белков эпителия канальцев. Это приводит к усилению переноса ионов натрия из первичной мочи в межклеточную жидкость с последующим переходом его в кровь, к усилению реабсорбции натрия. Т.е. альдостерон увеличивает канальцевую реабсорбцию натрия и секрецию калия.
Вазопрессин – гормон нейрогипофиза, образуется в супраоптических и паравентрикулярных ядрах гипоталамуса из полипептидов-предшественников, мигрирует по аксонам гипоталамо-гипофизарного тракта в нейрогипофиз, накапливаясь в нем.  Секреция контролируется меланолиберином и меланостатином.
Мишени вазопрессина – артериолы и капилляры легочных и коронарных сосудов. Гормон вызывает их сужение, что сопровождается повышением артериального давления и связанным с этим расширением мозговых и почечных сосудов. Еще одна мишень – дистальные извитые канальцы и собирательные трубочки нефрона. Эффект реализуется через аденилатциклазную систему. Это проявляется активацией гиалуронидазы, усиленным расщеплением гиалуроновой кислоты и связанным с этим ростом проницаемости канальцевого эпителия.
В результате увеличения проницаемости ускоряется реабсорбция воды, что ведет к уменьшению объема конечной мочи.
При введении вазопрессина извне происходит уменьшение диуреза. Поэтому он называется антидиуретическим. Дефицит гормона – полиурия и полидипсия (увеличение жажды).   
4) Мальтоза, лактоза, сахароза, крахмал, гликоген и целлюлоза.
Билет 52
1. Структура и функции  полимеров соединительной ткани: глюкозаминогликанов, протеогликанов; фибронектина.
2. Биологическое значение кальция, содержание в крови, факторы, контролирующие его содержание.
3. Переваривание и всасывание углеводов в желудочно-кишечном тракте. Возможные  нарушения  и их признаки.
4. Чем сдерживается скорость свободно-радикального окисления?
Ответ:
1) Гликозоаминогликаны -  линейные отрицательно заряженные гетерополисахариды из повторяющихся дисахаридных единиц. Они могут связывать большое количество воды, в результате чего межклеточное вещество приобретает желеобразный характер. Важнейшими из них являются – гиалуроновая кислота и хондроитинсульфаты. Гиалуроновая кислота – состоит из повторяющейся ед., в состав которой входят глюкуроновая кислота и N-ацетилглюкозамин. Хондроитинсульфаты состоят из повторяющейся единицы, в состав которой входят глюкуроновая кислота и сульфированный N-ацетилгалактозамин.
Протеогликаны – высокомолекулярные соединения, состоящие из белка и гликозаминогликанов. Они образуют основное вещество межклеточного матрикса соединительной ткани. Белки представлены одной полипептидной цепью разной молекулярной массы. Белковый компонент синтезируется на полирибосомах, связанных с эндоплазматическим ретикулумом - пептидная цепь пронизывает всю мембрану. Углеводная часть с белковой связана через гидроксильные группы остатков серина. Здесь же в полости ретикулума происходит и сульфатирование углеводной части протеогликана. В процессе синтеза синтезируемые молекулы перемещаются к АГ, где они включаются в секреторные гранулы. К одной полипептидной цепи последовательно прикрепляются цепи гликозаминогликана, образуя фигуру, напоминающую щеточку.
Глюкозаминогликаны и протеогликаны, являясь обязательным компонентом межклеточного матрикса, играют важную роль в межклеточных взаимодействиях, в формировании и поддержании формы клеток и органов, в образовании каркаса при формировании тканей.
Фибронектин – один из ключевых белков межклеточного матрикса. Он находится на поверхности плазматических мембран, в глубине межклеточного вещества соединительной ткани и плазме крови. Его роль как фактора, заключается в объединении компонентов межклеточного матрикса в единую систему (ткань). Полипептидная цепь фибронектина содержит 7-8 доменов, на каждом из которых расположены специфические центры для связывания различных веществ. Он может связывать коллаген, гепарин, гиалуроновую кислоту.
2) Кальций – внеклеточный катион, основной компонент костной ткани, участвует в проведении нервного импульса, в инициации мышечного сокращения. 99% кальция содержится в костной ткани (зубы, кости скелета). Лишь около 1% Са содержится в сыворотке и других биологических жидкостях организма.
В организме кальций выполняет следующие функции: создает основу и обеспечивает прочность костей и зубов; участвует в процессах нейромышечной возбудимости (как антагонист ионов калия) и сокращении мышц; регулирует проницаемость клеточных мембран; регулирует ферментативную активность; участвует в процессе свертывания крови (активирует VII, IX и X факторы свертывания).
Общий кальций крови включает 3 фракции:
1) белоксвязующий
2) ионизированный – регулятор секреции паращитовидных желез, фактор связывания крови
3) неионизированный
Регуляцию кальция в крови обеспечивают:
1) гормоны паращитовидных желез (паратгормон и кальцитонин)
- паратгормон усиливает реабсорбцию кальция и тормозит реабсорбцию фосфатов. Это приводит к повышению кальция в крови.
- кальцитонин ограничивает активность остеокластов и обеспечивает депонирование кальция в костной ткани, а также ускоряет выделение кальция с мочой.
2) активная форма витамина Д – в слизистой кишечника способствует превращению белка-предшественника в кальцийсвязующий белок, который участвует во всасывании кальция из кишечника.
Секреция парагормона зависит от концентрации ионизированного кальция в сыворотке крови: повышения концентрации снижает секрецию, снижение – повышает. Секреция кальцитонина зависит от концентрации кальция в крови: увеличивается   в ответ на его повышение и снижается при понижении.
3)
4)
Билет 53
1. Буферные системы крови, компоненты систем, их соотношение в поддержании постоянства крови. Ацидоз, алкалоз.
2. Овариальный цикл и соответствующие этапы маточного цикла.
3. Основной путь обезвреживания аммиака.
4.Кофермент: понятие, классификация, примеры.
Ответ:
1) стр. 210
2) Овариальный цикл:
1- фолликулиновая фаза: развитие фолликулов, секреция эстрогенов и овуляция
2- лютеиновая фаза: функционирует желтое тело, секретируется прогестерон
3- фаза инволюции желтого тела: прекращается секреция эстрогенов и прогестерона
фолликулиновая фаза: ФСГ вызывает созревание фолликулов и образование эстрогенов. Выделение эстрогенов в кровоток угнетает секрецию ФСГ и стимулирует образование ЛГ, который обеспечивает овуляцию и продукцию прогестерона, переход к следующей фазе.
лютеиновая фаза: образуется желтое тело, которое продуцирует прогестерон, который поступая в кровь, тормозит секрецию ЛГ и стимулирует выделение пролактина. Пролактин поддерживает продукцию прогестерона и стимулирует развитие молочных желез. Если яйцеклетка не оплодотворилась или не имплантировалась, начинается переход к 3 фазе. Если оплодотворилась, то наступает беременность.
фаза инволюции желтого тела: желтое тело подвергается обратному развитию, продукция прогестерона прогрессивно снижается. Низкий уровень эстрогенов и прогестерона в крови приводит к тому, что вновь активируется продукция фоллиберина и ФСГ, а, следовательно, начинается фолликулиновая фаза.
Фазам овариального цикла соответствуют определенные изменения в матке, обусловленные половыми гормонами – маточные фазы.
Маточный цикл:
1- пролиферативная фаза: эстрогены, выделяющиеся в процессе созревания фолликула, действуют на эндометрий, вызывая пролиферацию эпителия матки, повышение сократительной активности миометрия.
2- секреторная фаза: подготовленный эстрогенами эндометрий под влиянием прогестерона секретирует слизь, это необходимо для имплантации яйцеклетки;
3- менструальная фаза: продолжается продукция прогестерона, который угнетает продукцию ЛГ. Снижение ЛГ вызывает отторжение слизистой, кровотечение.
3) Обезвреживание аммиака осуществляется следующими путями:
а) восстановительное аминирование (малосущественно, хотя обеспечивает образование некоторых аминокислот)
б) образование амидов аспарагиновой и глутаминовой кислоты – аспарагина и глутамина. Этот процесс протекает в нервной, мышечной ткани и в почках; катализаторы – аспарагинсинтетаза и глутаминсинтетаза.
в) образование аммониевых солей происходит в почечной ткани, куда аммиак доставляется в виде аспарагина и глутамина. Здесь они гидролизизуются, образуя аспарат и глутомат, и высвобождается аммиак. Аммиак нейтрализуется путем образования солей аммония, а они удаляются с мочой.
г) синтез мочевины – основной путь обезвреживания и удаления аммиака – осуществляется в печени. Протекает в несколько реакций:
1 – синтез карбомоил – фосфата; фермент – карбомоилфосфосинтетаза.
2 - карбомоилфосфат взаимодействует с орнитином, образуя цитруллин; катализатор – орнитинкарбомоилфосфаттрансфераза.
3 – цитруллин взаимодействует с аспаратом, образуя аргининсукцинат.
4 – аргининсукцинат расщепляется на фумарат и аргинин.
5 – аргинин под действием аргиназы расщепляется гидролитически на мочевину и орнитин.
Мочевина – это безвредное соединение, синтез его происходит в печени, нарушение функции которой ведет к замедлению процесса, снижению содержания мочевины в крови и уменьшению выделения с мочой.
4) Коферменты – это вещества, необходимые некоторым ферментам для проявления активности. Они непосредственно участвуют в катализируемой ферментом химической реакции.
Классификация:
а) неорганические (ионы металлов, некоторые анионы)
б) органические
Ионы металлов – ионы кальция, магния, калия, цинка, железа. Они участвуют в: стабилизации третичной или четвертичной структуры, в связывании или катализе субстрата.
Различают коферменты нуклеотидной природы, тетрапиррольные коферменты и коферменты – производные витаминов.
Коферменты – нуклеотиды – в составе трансфераз участвуют в переносе фосфата, пирофосфата, аденилата, в превращениях сахаров.
Тетрапиррольные коферменты идентичны гему в гемоглобине; участвуют в транспорте электронов в составе цитохромов, пероксидазы.
Коферменты – витамины участвуют в разнообразных химических реакциях обмена. Например, коферментная форма витамина В1 (тиамина) – тиаминдифосфат, катализирует реакцию декарбоксилирования.
Билет 54
1. Антикоагулянты. Представители, их характеристика, значение.
2. Биосинтез триацилглицеридов. Локализация, регуляция, мобилизация при голодании, физических нагрузках.
3. Определите понятия «изоэлектрическая точка», «изоэлектрическое состояние белковой молекулы».
4. Назовите основной вид гемоглобина человека.
Ответ:
1) Антикоагулянты — химические вещества и лекарственные средства, угнетающие активность свёртывающей системы крови и препятствующие образованию тромбов. Они играют очень важную роль в поддержании гемостаза, так как они сохраняют кровь в жидком состоянии и препятствуют распространению тромба за пределы поврежденного участка сосуда.
Различают антикоагулянты прямого действия (гепарин, антитромбин III), т.е. влияющие непосредственно на факторы свёртывания крови, в том числе, понижая активность тромбина, и непрямые антикоагулянты - антагонисты витамина К, препятствующие образованию протромбина в печени.
2) Синтез триглицеридов происходит из глицерина и жирных кислот (главным образом стеариновой, пальметиновой и олеиновой). Путь биосинтеза в тканях протекает через образование глицерол-3-фосфата как промежуточного соединения. В почках, а также в стенках кишечника, где активность фермента глицеролкиназы высока, глицерин фосфорилируется АТФ с образованием глицерол-3-фосфата: глицерин + АТФ – L-глицерол-3-фосфат + АДФ. В жировой ткани и мышцах вследствие очень низкой активности глицеролкиназы образование г-3-ф в основном связано с гликолизом или гликогенолизом. В процессе гл. распада глюкозы образуется диоксиацетонфосфат, который в присутствии цитоплазматической НАД-зависимой глицеролфосфатдегидрогеназы способен превращаться в глицерол-3-фосфат. В печени же наблюдается оба пути образования г-3-фосфата. Образовавшийся тем или иным путём г-3-ф ацилируется двумя молекулами КоА-производного жирной кислоты. В результате образуется фосфатидная кислота: Г-3-ф + ацил-КоА – фосфатидная кислота. Если идёт синтез триглицеридов, то происходит дефосфорилирование фосфатидной кислоты с помощью специфической фосфатазы и образование 1,2-диглицерида. Завершается процесс биосинтеза триглицеридов этерификацией образовавшегося 1,2-диглицерида третьей молекулой ацил-КоА.
3) Изоэлектрическая точка — кислотность среды (pH), при которой определённая молекула или поверхность не несёт электрического заряда. 
Изоэлектрическая точка – это значение рН среды, при котором суммарный электрический заряд растворенного в ней соединения равен нулю.
Изоэлектрическое состояние белковой молекулы – это
4) Гемоглобин – это важнейший хромопротеид; его функция – перенос кислорода и углекислого газа. Белковый компонент глобин, небелковый – гем. Гемоглобин А – основной гемоглобин взрослого человека – состоит из 2х видов полипептидных цепей – альфа и бета. Каждая

Приложенные файлы

  • docx 24046538
    Размер файла: 143 kB Загрузок: 0

Добавить комментарий