Понятие о гистологических тканях

Понятие о гистологических тканях.
Ткани - это исторически (филогенетически) сложившиеся системы клеток и неклеточных структур, обладающие общностью строения, в ряде случаев общностью происхождения и специализированные на выполнении определенных функций.
Эпителиальные ткани.
Эпителиальные ткани или эпителий широко представлены в организме. Они выстилают поверхность тела, слизистые и серозные оболочки внутренних органов, а также образуют железы. Эпителиальные ткани в эмбриогенезе развиваются из всех трех зародышевых листков - эктодермы, мезодермы и энтодермы. Различают покровный и железистый эпителий. Покровный эпителий отделяет и одновременно связывает организм с внешней средой. Он участвует в обмене веществ, обеспечивает функцию защиты от химических, механических, инфекционных воздействий, осуществляет всасывание, экскрецию и секрецию, участвует в процессе дыхания, терморегуляции и др.
Существует несколько классификаций эпителиев. Наиболее распространена морфологическая классификация эпителиальных тканей (таблица 1).
По филогенетической классификации эпителиев, созданной известным советским гистологом Н. Г. Хлопиным, учитываются гистофункциональные признаки, закрепленные генетически в процессе филогенеза. По этой классификации, с учетом развития тканей из всех трех зародышевых листков, различают следующие типы эпителиев:
1. Эпидермальный тип эпителия, он происходит из эктодермы, имеет обычно многослойное строение и выполняет, прежде всего, защитную функцию;
2. Энтодермальный тип эпителия, он образуется из энтодермы, по строению - однослойный призматический, специализирован на процессах всасывания веществ;
3. Целонефродермальный тип эпителия имеет мезодермальное происхождение, он однослойный, плоский или призматический, и выполняет, прежде всего, барьерную или экскреторную функции;
4. Эпендимоглиальный тип эпителия образуется из нервной трубки, выстилает спинномозговой канал и желудочки мозга;
5. Ангиодермальный тип эпителия имеет мезенхнмальное происхождение, к нему некоторые исследователи относят эндотелий, выстилающий изнутри кровеносные сосуды (не всеми признается).
Для эпителиев характерен ряд определенных морфологических признаков:
1. Эпителий - это всегда пласт клеток, функционирующих как единое целое;
2. Эпителиальные клетки тесно связаны между собой десмосомами, замыкательными пластинками и другими видами контактов;
3. Эпителий характеризуется наличием базальной мембраны, отделяющей эпителиальные клетки от подлежащей соединительной ткани;
4. В эпителиальных тканях, как правило, отсутствуют кровеносные сосуды, питание клеток осуществляется через базальную мембрану из сосудов подлежащей соединительной ткани;
5. Эпителии характеризуются наличием выраженной полярности клеток. При этом базальная часть клеток, примыкающая к базальной мембране, отличается по своей структуре от их противоположной, апикальной части;
6. Эпителиальные ткани обладают высокой регенеративной способностью. В однослойном эпителии почти все клетки способны к делению, в многослойном - преимущественно клетки базальных слоев;
7. Для эпителиев характерно наличие ряда специальных органелл - тонофибрилл (тонофиламентов), ресничек, микроворсинок, базальных складок и т. д.
Покровные эпителии
В соответствии с морфологической классификацией (таблица 1) различают несколько основных типов покровного эпителия, как многослойного, так и однослойного. При этом для многослойных эпителиев характерно наличие нескольких слоев, из которых только самый глубокий - базальный слой расположен на базальной мембране. Остальные слои не связаны с базальной мембраной. В многослойных эпителиях форма клеток поверхностного слоя является определяющей в названии (например, многослойный плоский неороговевающий эпителий).
Что касается однослойного эпителия, то в нем все клетки расположены на базальной мембране и их ядра расположены либо на разных уровнях (в несколько рядов) в многорядном эпителии, либо на одном уровне (в один ряд) в однорядном.
Слово однорядные в названии этих эпителиев часто опускается. В международной гистологической номенклатуре 1987 г. эти однорядные эпителии носят название - простого, однослойного кубического и простого однослойного призматического (столбчатого) эпителиев. Многослойный плоский неороговевающий эпителий выстилает полость рта, пищевод и роговицу глаза. В нем различают три слоя - базальный, шиповатый и поверхностный. Базальный слой клеток цилиндрической формы располагается на базальной мембране. За счет митотического деления этих клеток происходит смена вышележащих слоев эпителия. В базальном и шиповатом слоях в клетках хорошо развиты пучки тонофиламентов, а между клетками имеются десмосомы. Шиповатый слой представлен клетками многоугольной формы, а поверхностный слой - плоскими клетками.
Многослойный плоский ороговевающий эпителий состоит из множества клеток, объединенных в 4-5 основных слоев: базальный, шиповатый, зернистый, блестящий (не всегда выражен) и роговой. Этот эпителий образует эпидермис кожи. Базальный и шиповатый его слои состоят соответственно из цилиндрических и многоугольных шиповатых клеток, способных к размножению. Уплощенные клетки зернистого слоя содержат зерна фибриллярного белка-кератогиалина. Клетки блестящего слоя содержат белок элеидин, сильно преломляющий свет. Роговой слой образован уплощенными роговыми чешуйками, не имеющими ядер.
Переходный эпителий (кубический) типичен для мочеотводящих органов - лоханок почек, мочеточников и мочевого пузыря. Этот двухслойный эпителий состоит из базальных и покровных клеток, по форме приближающихся к кубическим. В нерастянутом виде, при сокращенном органе базальные клетки проявляют признаки увеличения. При этом в эпителии выделяют три слоя: базальный, промежуточный и поверхностный. Во время растяжения стенки органа эпителий становится более тонким, а базальные клетки, соприкасающиеся с базальной мембраной, лежат всего в 2-3 ряда.
Однослойный (псевдомногослойный) многорядный призматический реснитчатый эпителий, выстилает воздухоносные пути от носовой полости до бронхов, а также маточные трубы и др. В нем различают призматические реснитчатые, короткие и длинные вставочные клетки, а также бокаловидные железистые клетки. Все эти клетки лежат на базальной мембране, но имеют различную высоту. Ядра их образуют 3-4 ряда. Самыми высокими клетками являются реснитчатые клетки. Благодаря согласованному движению их ресничек происходит удаление слизи с инородными пылевидными частицами. Слизистые клетки выделяют муцин на поверхность эпителиального пласта.
Однослойный однорядный (простой) призматический каемчатый эпителий представлен в среднем отделе пищеварительного тракта. Он выстилает внутреннюю поверхность тонкой и толстой кишки и образован призматическими клетками, микроворсинки которых обеспечивают процессы всасывания. Среди этих клеток, расположенных на базальной мембране, имеются бокаловидные клетки (одноклеточные железы), выделяющие слизь на поверхность эпителиального пласта. Ядра всех клеток данного эпителия образуют один ряд.
Однослойный плоский эпителий, получивший название мезотелия. покрывает серозные оболочки - плевру, брюшину и перикард. Плоские, полигональной формы клетки мезотелия лежат на базальной мембране. Через мезотелий осуществляются процессы выделения и всасывания серозной жидкости, он способствует скольжению серозного покрова, препятствует образованию спаек.
Железистый эпителий. Железы.
Железистый эпителий представлен особыми эпителиальными клетками -гландулоцитами, обеспечивающими сложную функцию секреции, включающую четыре фазы: поглощение исходных продуктов, синтез и накопление секрета, выделение секрета - экструзию и, наконец, восстановление структуры железистых клеток. Эти фазы проходят в гландулоцитах циклично, в виде так называемого секреторного цикла.
Экструзия или выделение секрета в железистых клетках различного вида происходит неодинаково. Различают три типа секреции - мерокриновый (эккриновый), апокриновый и голокриновый. При мерокриновом типе секреции клетки полностью сохраняют свою структуру и объем. При апокриновом типе секреции происходит частичное разрушение железистых клеток, т. е. вместе с секретом отделяется либо апикальная часть железистой клетки (макроапокриновая секреция), или верхушки микроворсинок (микроапокриновая секреция). Голокриновый тип секреции приводит к полному разрушению железистых клеток (таблица2).
Железистый эпителий, продуцирующий слизь, может быть представлен одиночными железистыми клетками или железистыми полями. Примером последних является железистый эпителий слизистой оболочки желудка. Все клетки его являются железистыми. Продуцируя слизь, они защищают стенку органа от переваривающего действия желудочного сока.
Кроме указанных железистых клеток и полей в организме имеются специальные железистые структуры - железы, выполняющие секреторную функцию. Многие железы являются самостоятельными анатомическими образованиями - оформленными органами (печень, крупные слюнные железы, надпочечники и др.), другие являются лишь частью органов (железы пищевода, желудка и т. д.). Железы делят на две группы - железы эндокринные и железы экзокрйнные. Эндокринные железы, вырабатывающие гормоны, выделяют свои продукты непосредственно в кровь (гипофиз, надпочечники и др.) и не имеют выводных протоков. Экзокринные железы, продуцирующие секреты, выделяют свои продукты во внешнюю среду - на поверхность тела или в полости органов. Эти железы состоят из секреторных концевых отделов и выводных протоков. Концевые отделы образованы железистыми клетками - гландулоцитами, а выводные протоки - различными видами эпителиев. Экзокринные железы очень разнообразны по строению, типу секреции, способам выделения секрета, видам протоков, характеру секрета и т. д.
По форме концевых отделов различают железы альвеолярные, трубчатые и трубчато-альвеолярные. По ветвлению концевых отделов железы бывают разветвеленными (концевых отделов много) и неразветвленными (концевой отдел один). По строению выводных протоков-простые (выводной проток один) и сложные (выводной проток ветвится). По составу секрета - белковые, слизистые, белково-слизистые и сальные.

Кровь как гистологическая ткань
Кровь это жидкая ткань мезенхимной природы, осуществляющая ряд важных функций дыхательную, связанную с доставкой кислорода к тканям и удалением из них углекислоты, трофическую включающую доставку к тканям и органам питательных веществ и экскреторную, заключающуюся в удалении из тканей продуктов обмена и др. Кровь участвует также в процессе образования мочи, в переносе гормонов и биологически активных веществ, в обеспечении защитных реакций организма, в том числе в иммунитете, а также в поддержании гомеостаза.
Кровь состоит из форменных элементов эритроцитов, лейкоцитов и тромбоцитов и межклеточного жидкого вещества плазмы крови, содержащей ряд белков, в том числе альбумины, глобулины, фибриноген, ферменты, питательные вещества, минеральные соли и т. д. (таблица 3).
Эритроциты самые многочисленные форменные элементы крови. Это безъядерные высокоспециализированные клетки, утратившие в процессе развития свои ядра и органеллы и специализированные на переносе кислорода, благодаря наличию в них гемоглобина. Эритроциты обычно красятся оксифильно, имеют форму, чаще всего, двояковогнутого диска. Диаметр их в среднем около 7,5 мкм. Количество их в крови у мужчин в норме около 3,95,5 млн. в 1 мкл, у женщин 3,74,9 млн. в 1 мкл. Продолжительность жизни эритроцитов до 120 дней. Молодые эритроцитыретикулоциты (сетчатые эритроциты), в крови в норме их содержится до 15%. Эти клетки имеют меньше гемоглобина, чем зрелые эритроциты. В ретикулоцитах электронномикроскопически выявляются остатки ряда органелл эндоплазматической сети, рибосом и др. Это дает основание считать, что в них еще протекает синтез белков. При суправитальном окрашивании бриллиант-крезиловым синим эти клетки приобретают зернисто-сетчатую структуру. Появление ретикулоцитов в крови в большем, чем в норме количестве, свидетельствует о признаках активизации гемоцитопоэза в красном костном мозге.
Лейкоциты белые кровяные клетки, содержащие ядра. Эти клетки выполняют защитные функции фагоцитоз, иммунные реакции и др. Они способны к активному перемещению. Количество лейкоцитов в крови в норме около 38009000 в 1 мкл. Лейкоциты подразделяют на две группы: гранулоциты зернистые лейкоциты, имеющие специфическую зернистость в цитоплазме и сегментированные ядра, и агранулоциты незернистые лейкоциты, не имеющие специфической зернистости и характеризующиеся наличием несегментированных ядер.
Гранулоциты, в свою очередь, подразделяют в зависимости от сродства их специфических гранул к определенному виду красителя на нейтрофильные, эозинофильные и базофильные. Нейтрофильные гранулоциты нейтрофилы содержат в своей цитоплазме мелкую специфическую зернистость размером около 0,20,5 мкм, слабо окрашивающуюся как кислыми, так и основными красителями (розово-фиолетовая окраска) по методу Романовского азур II-эозином. В специфических гранулах этих клеток содержится ряд ферментов, обладающих бактерицидным действием, а также белок фагоцитин с антибактериальными свойствами. По своим функциям эти клетки являются микрофагами. Средняя продолжительность их жизни около 8 дней. Содержится их в крови около 6575% от общего количества лейкоцитов. Диаметр нейтрофилов в среднем около 8 мкм. Различают следующие виды нейтрофильных гранулоцитов: юные с бобовидным ядром, их около 00,5% от общего количества лейкоцитов; палачкоядерные с ядром в виде изогнутой палочки, их около 35%, и сегментоядерные с ядром в виде 34 сегментов, связанных тонкими перемычками, их около 6065%. Существуют также различия в строении ядер нейтрофилов, связанные с полом (половой хроматин). У женщин половой хроматин в нейтрофилах имеет форму барабанной палочки, расположенной в виде дополнительного скопления на поверхности ядра. Считают, что половой хроматин содержит одну из Х-хромосом.
Эозинофильные (ацидофильные) гранулоциты или эозинофилы. В крови их содержится около 15% от общего количества лейкоцитов. Эти клетки имеют специфическую зернистость, окрашивающуюся кислыми красителями, в том числе эозином. Размер гранул в них более крупный, чем в нейтрофилах, диаметр их около 0,50,8 мкм. Под электронным микроскопом они имеют кристаллоидное пластинчатое строение. В гранулах обнаружены многочисленные ферменты, в том числе кислая фосфатаза, лизоцим, фагоцитин и др. В эозинофилах содержится много гистамина и кининаз. Ядра оксифильных гранулоцитов чаще всего двулопастные. Реже встречаются палочкоядерные и юные формы. Размер эозинофилов колеблется в пределах 910 мкм. Фагоцитарная активность их более низкая, чем у нейтрофилов. Эозинофилы участвуют в защитных и аллергических реакциях организма, а также в накоплении и инактивации гистамина.
Баэофильные гранулоциты или базофилы и крови их содержится около 0,51% от общего, количества лейкоцитов. В цитоплазме этих клеток выявляется специфическая зернистость, воспринимающая основные красители. Зернистость крупная, диаметром около 0,51,2 мкм. Гранулы этих клеток содержат значительное количество гистамина и кислого гликозаминогликана гепарина. Причем гепарин определяет свойство метахроматического окрашивания гранул не в тон красителя, а в промежуточный цвет. Размер базофилов в среднем около 9 мкм. Ядра клеток мало сегментированы, слабодольчатые, по цвету сливаются с окраской гранул. Функция базофилов, прежде всего, заключается в участии их в иммунологических реакциях, в том числе при аллергии, а также в обмене гепарина и гистамина, от которых зависит свертывание крови и изменение проницаемости сосудов.
Агранулоциты или незернистые лейкоциты. К ним относят лимфоциты и моноциты. Лимфоцитов в крови человека содержится около 2035% от общего количества лейкоцитов. Они бывают малыми, средними и большими. Размер их колеблется от 4,5 мкм у малых форм, от 7 до 10 мкм у средних, от 10 мкм у больших. Для лимфоцитов характерно наличие округлых ядер и базофильной, сине-голубой цитоплазмы. Ее очень узкий ободок с большим трудом различим у малых лимфоцитов, у средних он выражен достаточно отчетливо. Среди малых лимфоцитов под электронным микроскопом различают малые светлые лимфоциты (7075% всех лимфоцитов), содержащие небольшое количество рибосом и имеющие лизосомы, и темные малые лимфоциты (1213% от всех лимфоцитов крови). Наконец, 1 2% от всех лимфоцитов в крови человека составляют плазмоииты (плазмолимфоциты), для которых характерно концентрическое, правильное расположение канальцев эндоплазматической сети вокруг ядра.
В иммунологическом плане среди лимфоцитов выделяют Т- и В-лимфоциты. Это иммунокомпетентные клетки. К ним также относят и плазматические клетки. В формировании иммунного ответа осуществляется кооперация макрофагов и лимфоцитов, а также базофилов и эозинофилов. Т-лимфоциты образуются в тимусе из стволовых клеток. В цитоплазме Т-лимфоцитов хорошо представлены лизосомы. Продолжительность жизни Т-лимфоцитов от нескольких недель до нескольких лет. Одна группа Т-лимфоцитов ответственна за клеточный иммунитетэто цитотоксические Т-лимфоциты или киллеры (убийцы). Регуляцию гуморального иммунитета осуществляют Т-лимфоциты-хелперы (помощники). Они распознают антигены, сообщают информацию В-лимфоцитам и способствуют их превращению в плазматические клетки, вырабатывающие антитела к соответствующим антигенам. Наконец, имеются Т-лимфоциты-супрессоры (угнетающие), которые подавляют выработку антител в системе иммунных клеток.
В-лимфоциты образуются в эмбриогенезе у птиц в так называемой сумке Фабрициуса. У человека, предположительно, эти клетки образуются в печени и лимфатических фолликулах кишечника из стволовых клеток. В-лимфоциты при кооперации с Т-лимфоцитами трансформируются в плазматические клетки. Последние и вырабатывают иммуноглобулины, поступающие в кровь. Таким образом, В-лимфоциты обеспечивают гуморальный иммунитет. Продолжительность их жизни исчисляется неделями и месяцами. В В-лимфоцитах по сравнению с Т-лимфоцитами хорошо развита гранулярная эндоплазматическая сеть. Однако четких морфологических критериев отличия Т- и В-лимфоцитов даже на ультрамикроскопическом уровне в настоящее время не имеется. Отличаются они в основном по своим иммунологическим свойствам, в основу которых заложены особенности строения их поверхностных мембран, объединяемых под понятием "рецепторы".
Моноциты. Это вторая разновидность агранулоцитов. Их количество в крови около 68% от общего числа лейкоцитов. Это самые крупные клетки крови, их размер в капле свежей кровидо 12 мкм, а в мазкедо 18 20 мкм. Ядра моноцитов по своей форме чаще всего подковообразные или лопастные. Ядра и цитоплазма моноцитов окрашены светлее, чем у лимфоцитов. Цитоплазма моноцитов занимает больший процент площади клетки по сравнению с таковой у лимфоцитов. В ней имеется небольшое количество азурофильных зерен (неспецифическая зернистость). В цитоплазме расположены лизосомы и пиноцитозные пузырьки. Они очень активно пенетрируют (проникают) в другие ткани. При этом в них увеличивается количество лпзосом, фагосом, фаголизосом и они превращаются в макрофаги.
Тромбоциты или кровяные пластинки. Их в крови человека содержится около 200300 тыс. в 1 мкм. Они представляют собой безъядерные фрагменты цитоплазмы гигантских клеток красного костного мозга мегакариоцитов. Размер тромбоцитов колеблется в пределах 23 мкм. Продолжительность жизни около 5 8 дней. В центре тромбоцита имеется зернистость грануломер (хромомер), окрашивающаяся базофильно. Грануломер окружен слабоокрашенным гиаломером. В гиаломере имеются тонкие филаменты и мнкротрубочки, расположенные циркулярными пучками. По-видимому, эти структуры поддерживают форму тромбоцитов. Гранулы грануломера различны по своей природе. Среди них имеются гранулы, содержащие серотонин. Основная функция тромбоцитов участие в процессах свертывания крови.
Для медицинской практики большое значение имеет так называемая гемограмма и, в частности, ее лейкоцитарная формула. У здорового человека форменные элементы крови находятся в определенных количественных отношениях, которые и принято называть гемограммой. В нее входят: количество эритроцитов, лейкоцитов и тромбоцитов, содержание гемоглобина, цветной показатель, резистентность эритроцитов, скорость осаждения эритроцитов СОЭ и некоторые другие показатели. Определенные процентные соотношения лейкоцитов, подсчитанные в мазке крови, называют лейкоцитарной формулой.
Понятие о кроветворении
Кроветворение или гемоцитопоэз - это сложный биологический процесс, включающий серии клеточных делений и дифференцировок, происходящих в органах кроветворения и приводящих к образованию зрелых форменных элементов крови, поступающих затем в периферическую кровь. Различают эмбриональное кроветворение, когда происходит закладка крови как ткани, и постэмбрирнальное кроветворение, когда происходит физиологическая регенерация крови.
Эмбриональное кроветворение начинается в стенке желточного мешка у эмбриона человека с 23 недель его развития, а затем последовательно протекает в печени, тимусе и в селезенке, которая в эмбриональном периоде является универсальным кроветворным органом. Далее эмбриональный гемопоэз протекает в лимфоузлах и красном костном мозге, который и становится универсальным кроветворным органом с 45 месяцев эмбриональной жизни. Начальные клетки крови крупные первичные эритроциты (мегалоциты) образуются из стволовых клеток крови в стенке желточного мешка эмбриона интраваскулярно, внутри первичных кровеносных сосудов. Далее во всех органах кроветворения клетки крови образуются экстраваскулярно и только после соответствующей дифференцировки поступают в сосуды.
Постэмбриональное кроветворение или физиологическая регенерация крови складывается из миелоцитопоэза и лимфоцитопоэза (таблица 7). Миелоцитопоэз это процесс образования гранулоцитов, эритроцитов, моноцитов и тромбоцитов. В постэмбриональном периоде он локализуется в миелоидной системе красном костном мозге. Лимфоцитопоэз образование лимфоцитов происходит в лимфоидной системе органов: в вилочковой железе (Т-лимфоциты), в лимфоузлах, в миндалинах и лимфоидных скоплениях кишечника.
Основу всех кроветворных органов составляет ретикулярная ткань, в сетчатом остове которой происходит созревание соответствующих форменных элементов из стволовых кроветворных клеток и их унитарных предшественников. Исключение составляет вилочковая железа, в которой основой является особый сетевидный эпителий, где и образуются Т-лимфоциты.
Пластический гемоцитопоэз. Он идет за счет размножения более молодых форм по эмбриональному типу.
В процессе образования эритроцитов происходят изменения морфологии эритропоэтических клеток, уменьшается их размер, происходит смена базофильной окраски на оксифильную в связи с уменьшением в них количества РНК и накоплением гемоглобина. Возникает уплотнение, а затем происходит исчезновение ядра (у нормобласта).
Промиелоциты имеют неспецифическую зернистость, миелоциты уже приобретают специфическую зернистость, за их счет в норме идет пополнение физиологической убыли гранулоцитов гемопластический гемоцитопоэз. Гетеропластический гранулоцитопоэз идет по эмбриональному типу из более молодых клеток. Миелоциты имеют округлое овальное ядро, а метамиелоциты уже несколько меньшего размера клетки с подковообразным ядром, они делятся. Далее идет процесс уменьшения размеров клетки, увеличения соответствующей специфической зернистости, изменения ядра на палочковидное и далее сегментированное, характерное для зрелых гранулоцитов.
Развитие тромбоцитов - тробоцитопоэз.
I СК II ПСК III УП-КОЕ-МГЦ (унипотентные предшественники мегакариоцитов КОЕ-МГЦ) IV мегакариобласты V промегакариоциты мегакариоциты (гигантские клетки с полиплоидными, лапчатыми ядрами) VI тромбоцит (участок цитоплазмы мегакариоцита).
Дифферон моноцитов. Развитие моноцитов моноцитопоэз.
I СК II ПСК III УП-КОЕ-М (унипотентные предшественники моноцитов КОЕ-М) IV монобласты V промоноциты VI моноциты.
Конец формы

Соединительные ткани
1. Понятие о соединительных тканях
Соединительные ткани это широко распространенные ткани человека. Они выполняют ряд важных функций, в том числе механическую (опорную и формообразовательную), защитную, трофическую, активно участвуют в регенерации и заживлении ран. Соединительные ткани имеют мезенхимное происхождение. Они подразделяются:
на собственно соединительную ткань рыхлую неоформленную и плотную оформленную и неоформленную, ткани со специальными свойствами жировую, пигментную, ретикулярную и слизистую, а также на скелетные хрящевую и костную. Все виды соединительных тканей характеризуются наличием клеток и хорошо развитым межклеточным веществом, состоящим из большого количества соединительнотканных волокон и основного аморфного вещества. В основу классификации этой большой группы мезенхимных тканей положен принцип соотношения клеток и межклеточных структур, а также степень упорядоченности соединительнотканных волокон.
2. Собственно соединительная ткань.
Этот многочисленный вид соединительных тканей включает рыхлую волокнистую неоформленную и плотную оформленную и неоформленную волокнистую соединительную ткани.
2.1. Рыхлая волокнистая неоформленная соединительная ткань.
Эта ткань характеризуется большим разнообразием клеток и меньшим, чем в плотной соединительной ткани, количеством волокнистых структур. Причем, оба эти компонента не имеют какой-либо выраженной ориентировки в своем расположении. Эта ткань широко представлена в организме, она сопровождает все сосуды и выполняет опорно-трофическую и защитную функции.
Клетки рыхлой волокнистой неоформленной содинительной ткани очень многочисленны. К ним относят фибробласты. Это отростчатые клетки со светлым ядром и нечеткими контурами. Различают дифференцированные формы фибробластов, принимающие активное участие в образовании волокнистых структур и основного аморфного веществ. В этих клетках хорошо развита эндоплазматическая сеть и пластинчатый комплекс. Вместе с тем встречаются ма-лодифференцированные фибробласты и, наконец, фиброциты дифинитивные формы, утратившие способность к размножению. Другой многочисленной клеточной формой этой ткани являются макрофаги. Это клетки с темно окрашенным ядром и четкими клеточными границами. Они содержат много лизосом. Основная их функция фагоцитоз. Эти клетки относятся к макрофагической системе организма. Наряду с макрофагами других органов и тканей они участвуют в процессе фагоцитоза. Все макрофаги происходят из промоноцитов костного мозга. И. И. Мечников первый предложил объединить эти клетки в защитную систему и назвал ее макрофагической.
Третьей клеточной формой этой ткани являются плазматические клетки плазмоциты. Это клетки округлой или овальной формы с эксцентрично расположенным ядром. Около ядра обнаруживается “светлый дворик” место расположения центриолей и пластинчатого комплекса. Хорошо развитая гранулярная эндоплазматическая сеть этих клеток интенсивно вырабатывает гаммаглобулины антитела, поступающие в кровь. Таким образом основная функция плазматических клеток это обеспечение гуморального иммунитета. Плазматические клетки, как Т- и В-лимфоциты, являются иммунокомпетентными. Среди клеточных форм встречаются и тканевые базофилы (тучные клетки). В своей цитоплазме они содержат крупную специфическую, базофильную зернистость, такую, как в базофильных лейкоцитах. В составе этой зернистости выявляется гепарин, гистамин, некоторые другие биогенные амины. Эти клетки принимают участие в образовании межклеточного ве-щества, свертывании крови, в повышении проницаемости сосудистой стенки в иммунных реакциях и, наконец, в развитии воспалительного процесса. Часто встречаются в рыхлой волокнистой соединительной ткани жировые клетки (липоциты или адипоциты). Эти клетки содержат в цитоплазме крупную жировую каплю, занимающую большую часть клетки. Вокруг капли располагается узкий ободок цитоплазмы, охватывающий сплющенное ядро. Эти клетки принимают участие в процессе энергообразования, в трофике и в водном обмене. Очень демонстративными клетками ткани являются также пигментные клетки. Эти отросчатые клетки содержат в цитоплазме пигмент меланин. Большинство исследователей считает, что пигментные клетки имеют эктодермальное, невральное происхождение. Они выполняют защитную роль, поглащая световые и тепловые лучи. Следующей клеточной формой являются адвентициальные клетки, которые располагаются снаружи кровеносных сосудов (многие авторы отождествляют адвентициальные клетки с перицитами). Эти малодифференцированные клетки могут превращаться в другие соединительнотканные клетки. Кроме того, в этой ткани встречаются эндотелиальные клетки. Они выстилают внутреннюю поверхность сосудов. Вопрос об их принадлежности к соединительной ткани остается дискуссионным. Наконец, в рыхлой соединительной ткани также встречаются различные лейкоциты, мигрировавшие в нее из крови.
Клетки рыхлой волокнистой соединительной ткани участвуют во многих реактивных и патологических процессах, в том числе в реакции воспаления. В первую его альтернативную фазу происходит дегрануляция тучных клеток и выход из них гепарина и гистамина. Далее, в эксудативную стадию наблюдается нейтрофильный фагоцитоз. Его сменяет реакция моноцитов и лимфоцитов. Эти клетки проявляют активный фагоцитоз и очищают очаг воспаления от распадающихся клеток. Третья стадия - пролиферативная, фибробластическая. Появление фибробластов свидетельствует о начале процесса заживления.
Межклеточное вещество соединительной ткани состоит из волокон и основного аморфного вещества. Межклеточное вещество образуется в результате деятельности клеток. Различают три вида соединительнотканных волокон: коллагеновые, эластические и ретикулярные. Коллагеновые волокна выполняют механическую функцию. 0ни не ветвятся, но лентовидно извиваются. Коллагеновые волокна окрашиваются оксифильно (в частности, эозином в розовый цвет). Они состоят из пучков параллельно расположенных фибрилл. Фибриллы имеют поперечную исчерченность. Коллагеновые волокна содержат белок тропоколлаген и гликозаминогликаны. Коллагеновые волокна являются производными фибробластов. Эластические волокна обладают большой растяжимостью, но меньшей прочностью, чем коллагеновые. Эластические волокна более тонкие, они ветвятся. Окрашиваются эти волокна специальными красителями (резорцин-фуксином или орсеином в бордовый цвет). Состоят из микрофибрилл, не имеют поперечной исчерченности. Их основной химический состав белок эластин, связанный с гликозаминоглнканами. Молекулы эластина располагаются как в резине, без определенной ориентировки, чем и объясняется эластичность этих волокон. Ретикулярные (решетчатые) волокна обнаруживаются при импрегнации солями серебра. Поэтому их называют еще аргирофильными. Они напоминают по своей структуре коллагеновые волокна, однако, они более тонкие и ветвистые. Эти волокна образуют сети и состоят из микрофибрилл с поперечной исчерченностью и цементи-рующего вещества. Отличаются они от коллагеновых волокон более высокой концентрацией серы, липидов и углеводов. Выполняют преимущественно механическую функцию. Особенно их много в ретикулярной ткани кроветворных органов.
Основное аморфное вещество рыхлой соединительной ткани имеет важное значение в обмене веществ. Нарушение его физико-химических свойств может быть причиной ряда тяжелых заболеваний. Основное вещество содержит белки, воду, ферменты, гликозаминогликаны гиалуроновую кислоту, гепарин, хондроитинсерную кислоту и гликопротеины (неколлагеновые белки) и т. д.
2.2. Плотная волокнистая соединительная ткань.
Эта ткань характеризуется относительно небольшим количеством клеток и большим числом плотно расположенных соединительнотканных волокон. В зависимости от расположения волокнистых структур различают оформленную с упорядоченным соответственно механическим нагрузкам расположением волокон и клеток, и неоформленную плотную волокнистую соединительную ткань с неупорядоченным расположением клеток и волокнистых структур. Примером плотной волокнистой неоформленной соединительной ткани является сетчатый слой дермы кожи человека. Плотная оформленная волокнистая ткань образует сухожилия, связки, фиброзные мембраны, а также выявляется в некоторых пластинчатых соединительнотканных образованиях.
Сухожилия состоят из клеток-фиброцитов и межклеточного вещества с малым содержанием основного вещества и большим количеством упорядочено, плотно упакованных коллагеновых волокон. Коллагеновые волокна, располагаясь параллельно друг к другу, образуют пучки I порядка. Между пучками I порядка вытянуты сухожильные клетки фиброциты или тендиноциты. Совокупность пучков I порядка составляет пучки II порядка. Последние отделены друг от друга прослойками рыхлой волокнистой неоформленной ткани эндотенонием (эндотендинием). Из пучков II порядка формируются пучки III порядка. Эти пучки покрыты прослойкой волокнистой соединительной ткани - перитенонием (перитендинием). Все сухожилие с поверхности одето оболочкой из плотной волокнистой соединительной ткани эпитендинием. Так же устроена и особая эластическая выйная связка, только ее пучки образованы эластическими волокнами.
К фиброзным мембранам относят апоневрозы, фасции, склеру, надхрящницу, надкостницу, твердую мозговую оболочку, капсулы ряда органов, белочную оболочку яичка и яичника, а также сухожильные центры диафрагмы. Фиброзные мембраны включают трудно растяжимую соединительную ткань. Пучки волокон и лежащие между ними клетки фибробластического ряда располагаются в этой ткани в определенном порядке в несколько слоев друг над другом. Отдельные пучки переходят из одного слоя в другой. Существует особая разновидность фиброзных мембранпластинчатая соединительная ткань. В ней чередуются слои коллагеновых фибрилл и клеток типа фибробластов и фиброцитов. Такая плотная волокнистая оформленная соединительная ткань встречается в оболочках нервов, инкапсулированных нервных окончаниях и в стенке извитых семенных канальцев яичника.
3. Соединительные ткани со специальными свойствами
В эту группу соединительных тканей включают жировую, пигментную и слизистую ткани. Жировая ткань представляет собой скопление жировых клеток. Эта ткань является своеобразным депо макроэргических соединений и воды. Она также выполняет механическую функцию. Различают белую и бурую жировую ткань. Последняя у человека встречается главным образом у новорожденных. Бурый цвет клеткам придают железосодержащие пигменты. Эта разновидность жировой ткани играет большое значение в процессах терморегуляции. В ее жировых клетках имеется очень большое количество митохондрий и множество мелких жировых капель (многокапельные адипоциты), вместо одной большой жировой капли (однокапельные адипоциты), как в клетках белой жировой ткани. Ретикулярная ткань образует строму кроветворных орга-нов и состоит из отростчатых ретикулярных клеток и межклеточного вещества с ретикулярными (решетчатыми, аргирофильными) волокнами и основным аморфным веществом;
В этом микроокружении, в ее ретикулярной сети созревают форменные элементы крови. Ретикулярные клетки бывают трех видов: фибробластоподобные, образующие межклеточное вещество и ретикулярные волокна; фагоцитирующие ретикулярные клетки и малодифференцированные ретикулярные клетки. Пигментная ткань представляет собой совокупность пигментных клеток меланоцитов. Встречается она в радужной и сосудистой оболочках глаза, в родимых пятнах, в коже мошонки и сосков молочных желез, а также около анального отверстия. Слизистая или студенистая соединительная ткань имеется в пупочном канатике человеческого плода. Состоит она из фибробластоподобных клеток и межклеточного вещества с коллагеновыми фибриллами и желеобразным основным веществом, содержащим большое количество гликозаминогликанов.
4. Скелетные соединительные ткани
Скелетные соединительные ткани включают хрящевую и костную ткани. Эти ткани выполняют основную опорно-механическую функцию, принимая участие в образовании скелета.
4.1. Хрящевая ткань
Хрящевая ткань выполняет преимущественно опорную, механическую функцию. Состоит она из клеток хондроцитов и хондробластов и упругого межклеточного вещества с волокнистыми структурами и основным аморфным веществом. Последнее содержит белки, липиды, гликозаминогликаны и протеогликаны. Чаще всего, давая характеристику хрящевой ткани, говорят о хряще, как об анатомическом образовании. С поверхности хрящ покрыт надхрящницей (перихондрием), состоящей преимущественно из плотной волокнистой соединительной ткани. В ней различают два слоя: наружный, волок-нистый состоящий, главным образом, из волокон и кровеносных сосудов и внутренний, хондргенный - в котором преобладают клетки типа хондробластов. Надхрящница играет большую роль в регенерации, росте и трофике хряща. Питательные вещества хрящ получает из надхрящницы, т. к. сама хрящевая ткань обычно не содержит кровеносных сосудов. Развивается хрящевая ткань из мезенхимы. При этом можно выделить 4 стадии: 1 предхрящевую стадию, 2 стадию первичной хрящевой ткани, 3 стадию малодифференцированного хряща и, наконец, 4 стадию высокодифференцированного хряща с преобладанием больших изогенных групп хондроцитов. Различают два вида роста хряща интерстициальный, при котором путем деления хондооцитов внутри хряща образуются изогенные группы совокупности хрящевых клеток, и аппозиционный, когда хрящ образуется за счет хондробластов надхрящницы. Выделяют в связи с особенностями строения межклеточного вещества три вида хрящевой ткани гиалиновую, эластическую и волокнистую. Гиалиновая хрящевая ткань достаточно широко распространена; она имеется в трахее, бронхах, хрящевой части ребер, на суставных поверхностях костей и т. д. В состав ее, как и в других видах соединительной ткани, входят клетки (хондроциты) и межклеточное вещество. Хрящевые клетки по периферии хряща располагаются одиночно, а внутри образуют изогенные группы, в которых насчитывают до 810 клеток. Одиночные хондроциты и изогенные группы клеток не имеют какой-либо специальной ориентировки. Межклеточное вещество гиалиновой хрящевой ткани состоит из основного аморфного вещества и коллагеновых волокон, которые не выявляются при обычной фиксации и окраске. Эластическая хрящевая ткань встречается преимущественно в надгортаннике, мелких хрящах гортани и в ушной раковине. В отличие от гиалинового хряща эластический хрящ не прозрачен, имеет желтоватый цвет, не обызвествляется, содержит меньше липидов, гликогена и хондроитинсульфатов. Одиночные хрящевые клетки и небольшие одиночные изогенные группы по 24 клетки в этой хрящевой ткани располагаются упорядоченно, столбиками. Главное отличие этого хряща от гиалинового состоит в том, что в его межклеточном веществе кроме коллагеновых волоко имеются и эластические. Последние хорошо выявляются при специальной окраске, в частности, орсеином. Волокнистая хрящевая ткань представлена у человека преимущественно в местах перехода сухожилий и связок в гиалиновый хрящ, в межпозвоночных дисках и в полуподвижных сочленениях. В отличие от гиалиновой хрящевой ткани хрящевые клетки этой ткани имеют меньшие размеры, напоминают по своему строению фиброциты; изогенные группы их редкие и небольшие, по 12 клетки, в межклеточном веществе коллагеновые волокна образуют хорошо видимые толстые пучки.
4.2. Костная ткань
Костная ткань (textus osseus) в организме человека представлена достаточно широко. Она выполняет ряд важных функций: механическую, опорную, участвуя в образовании систем и органов движения; является депо минеральных солей; создаст условия для кроветворения (внутри костной ткани располагается красный костный мозг). Состоит костная ткань, как и другие виды соединительных тканей, из клеток и межклеточного вещества. Последнее образовано оссеиновыми (коллагсновыми) волокнами и основным аморфным веществом, представленным оссеомукоидом (сложным белково-углеводным соединением). Твердость костной ткани зависит от того, что межклеточное вещество костной ткани сильно минерализованно. Соли кальция, магния, фтора откладываются в ней в виде кристаллов гидрооксиаппатита.
К клеткам костной ткани относятся остеобласты (osteoblastocyti) базофильно окрашенные клетки, принимающие участие в образовании костной ткали, остеокласты (osteoclastocyti) многоядерные клетки симпласты, участвующие в резорбции (разрушении) кости, и остеоциты (osteocyti) основные костные клетки, имеющие отростчатую форму. Последние, вместе с межклеточным веществом, и образуют основную массу костной ткани.
Различают два вида костной ткани грубоволокнистую (textus osseus reticulofibrosus) и пластинчатую (textus osseus lamellaris). В грубоволокнистой костной ткани не выявляется какой-либо специальной ориентировки в расположении как остеоцитов, так и оссеиновых волокон межклеточного вещества. Оссеиновые волокна в ней образуют грубые пучки. Этот вид костной ткани у человека встречается в эмбриональном периоде, у взрослых она имеется только в местах прикрепления сухожилий к костям и в заросших черепных швах. Пластинчатая (тонковолокнистая) костная ткань широко распространена у человека. Ее структурной единицей является костная пластинка, в которой параллельно расположенные коллагеновые волокна, спаяны минерализованным основным веществом. внутри костных пластинок, или между ними, располагаются остециты, пластинчатая костная ткань образует два вида костного вещества компактное и губчатое. В губчатом веществе костные пластинки образуют перекладины, анастомозируюшие между собой. Это вещество широко представлено в эпифизах длинных трубчатых костей. В компактном веществе костные пластинки лежат компактно, образуя три слоя наружный сдой общих или генеральных пластинок; средний остеонный слой и внутренний слой общих иди генеральных пластинок. Остеонный слой представлен остеонамн и системами вставочных пластинок (старые осеонные системы). Остеоны это структурно-функциональные единицы компактного вещества трубчатой кости, придающие ей особую прочность В центре остеона, в его канале проходят кровеносные сосуды. Вокруг их концентрически располагаются костные пластинки. В соседних пластинках коллагеновые волокна имеют смещенное неодинаковое направленне, что обеспечивает прочность остеонов. Расположены остеоны по длинной оси трубчатой кости. Каналы остеонов анастомозируют друг с другом, образуя так называемые прободающие питательные каналы. Они не имеют собственных костных пластинок.
С поверхности кость как орган покрыта надкостницей (периостом), образованной преимущественно плотной волокнистой соелинительной тканью, в которой различают 2 слоя: наружный волокнистый и внутренний остеогенный с остеобластами. Из него в кость проходят сосуды и нервы. Из надкостницы внутрь кости идут толстые пучки прободающих коллагеновых волокон, связывающих кость с надкостницей. Надкостница участвует с помощью сосудов и нервов в трофике, участвует в росте и регенерации (остеобласты) кости. Со стороны костно-мозгового канала кость выстлана тонкой, но прочной соединительнотканной пластинкой эндостом.
4.3. Развитие костной ткани
Костная ткань развивается из мезенхимы двумя способами: прямым остеогенезом непосредственно из мезенхимы и непрямым остеогенезом на месте гиалинового хряща. Во втором случае сначала из мезенхимы образуется гиалиновый хрящ, а потом на месте этого гиалинового хряща уже развивается костная ткань.
Прямой остеогенез, т. е. непосредственное развитие из мезенхимы претерпевает грубоволокнистая костная ткань покровных костей черепа на 1 месяце эмбриональной жизни человека. Этот процесс включает: а) перепончатую стадию, характеризующуюся размножением мезенхимных клеток на месте закладки будущей кости; б) остеоидную стадию, в которой мезенхимные клетки превращаются в остеобласты; последние вырабатывают межклеточное вещество; часть клеток оказывается замурованной в межклеточном веществе и они превращаются в остеоциты; новообразованная (костноподобная) ткань ещё мягкая, в ней много гликозаминогликанов, но нет солей; в) в стадию оссификации, когда и образуется грубоволокнистая костная ткань и надкостница; г) стадию замены грубоволокнистой костной ткани на пластинчатую: из надкостницы в кость врастают кровеносные сосуды и вокруг них образуются остеоны; несколько позднее со стороны надкостницы происходит образование слоя наружных общих костных пластинок.
Непрямой остеогенез. Развитие ткани на месте гиалинового хряща. Хрящевой остеогенез начинается на втором месяце эмбрионального развития в местах закладки будущих трубчатых костей и может быть представлен в виде следующих стадий:
1. Развитие из мезенхимы хрящевой модели в виде гиалинового хряша, покрытого надхрящницей.
2. Перихондральное окостенение образование в диафизах между надхрящницей и гиалиновым хрящом перихондральной костной манжетки. При этом грубоволокнистая костная ткань манжетки образуется по типу прямого развития из мезенхимы. Превращение надхрящницы в надкостницу.
3. Дистрофия, дегенерация и обызвествление гиалинового хряща в центре диафиза будущей трубчатой кости.
4. Образование точек окостенения в центре диафиза. Оно сочетается с врастанием из надкостницы крвеносных сосудов, сопровождаемых малодифференцированными клетками мезенхимной природы. Далее происходит энхондральное окостенение в центре диафиза образование пластинчатой костной ткани, содержащей остатки обызвествленного гиалинового хряща; распространение процесса энхондрального окостенения по направлению к эпифизам и формирование костномозгового канала.
5. Периостальное окостенение замена грубоволокнистой перихондральной костной манжетки на пластинчатую костную ткань. Оно сопровождается врастанием кровеносных сосудов из надкостницы, образованием вокруг них остеонов и оппозиционным накладыванием со стороны надкостницы слоя наружных генеральных пластинок. Далее идет смыкание периостальной кости с энхондральной и распространение процесса окостенения к эпифизам.
6. Энхондральное окостенение в эпифизах. Оно заключается в появлении точек окостенения в эпифизах. Происходит врастание в дистрофически измененный гиалиновый хрящ эпифизов кровеносных сосудов и образование губчатого вещества пластинчатой костной ткани.
7. Формирование эпифизарных пластинок роста. При этом между эпифизами и диафизом сохраняется две зоны гиалинового хряща, где хондроцнты продолжают делиться, благодаря чему кость растет в длину. Одновременно в хрящевых эпифизарных пластинках постепенно усиливается резорбция хряща и замещение энхондральной губчатой костной тканью.
8. Смыкание энхондрального окостенения в эпифизах с окостенением в диафизе. Оссификация эпифизарных пластинок роста. Прекращение роста кости в длину.


1. Понятие о мышечных тканях
Мышечные ткани (textus musculares) представляют группу разных по происхождению тканей животных и человека, обладающих общим свойством сократимостью. Это свойство осуществляется этими тканями благодаря наличию в них специальных сократительных структур миофиламентов Различают следующие основные виды мышечных тканей: гладкую (неисчерченную) мышечную ткань и поперечнополосатые (исчерченные) мышечные ткани. Последние, в свою очередь, подразделяют на скелетную мышечную ткань и сердечную мышечную ткань. Свойством сократимости обладают также некоторые специализированные разновидности других тканей. К ним относят так называемую эпителиально-мышечную ткань (в потовых и слюнных железах) и нейроглиальную мышечную ткань (в радужной оболочке глаза) (таблица 9).
2. Гладкая (неисчерченная) мышечная ткань
Гладкая мышечная ткань (textus muscularis nonstriatus) развивается из мезенхимы. Она составляет двигательный аппарат внутренних органов, кровеносных и лимфатических сосудов. Ее сокращения имеют медленный, тонический характер. Структурной единицей гладкой мышечной ткани является клетка удлиненной веретенообразной формы гладкий миоцит. Она покрыта плазмолеммой, к которой снаружи примыкает базальная мембрана и соединительнотканные волокна. Внутри клетки в ее центре, в миоплазме имеется вытянутой формы ядро, вокруг которого расположены митохондрии и другие органеллы.
В миоплазме миоцитов под электронным микроскопом обнаружены сократительные белковые нити миофиламенты. Различают миофиламенты актиновые, миозиновые и промежуточные. Актиновые н миозиновые миофиламенты обеспечивают сам акт сокращения, а промежуточные предохраняют гладкие миоциты от их избыточного расширения при укорочении. Миофиламенты гладких миоцитов не образуют дисков, поэтому эти клетки не имеют поперечной исчерченности, и получили название гладких, неисчерченных. Гладкие миоциты хорошо регенерируют. Они делятся митозом, могут развиваться из малодифференцированных соединительнотканных клеток, способны к гипертрофии. Между клетками располагается опорная строма гладкой мышечной ткани коллагеновые и эластические волокна, образующие плотные сети вокруг каждой клетки. Гладкие мышечные клетки синтезируют сами волокна этой стромы.
3. Поперечнополосатые (исчерченные) мышечные ткани
Как уже было сказано, в эту группу поперечнополосатых мышечных тканей включают скелетную и сердечную мышечные ткани. Эти ткани объединяют прежде всего по признаку поперечной исчерченности их специальных органелл миофибрилл. Однако по своему происхождению, общему плану строения н функциональным особенностям, эти два вида поперечнополосатых мышечных тканей существенно отличаются.
3.1. Поперечнополосатая скелетная мышечная ткань
Скелетная мышечная ткань (textus muscularis striatus sceletalis) развивается из сегментированной мезодермы, точнее из ее центральных участков, получивших название миотомов. Структурно-функциональной единицей этой ткани являются многоядерные миосимпласты поперечнополосатые мышечные волокна. С поверхности они покрыты сарколеммой сложным образованием, состоящим из трехслойной плазмолеммы мышечного волокна, базальной мембраны и прилежащей к ней снаружи сети соединительнотканных волокон. Под базальной мембраной, прилегая к плазмолемме мышечного волокна, располагаются особые мышечные клетки сателлиты. Внутри мышечного волокна, в его саркоплазме, по периферии, расположены многочисленные ядра, а в центре, вдоль волокна, находятся специальные органеллы миофибриллы. Митохондрии н другие общие органеллы в мышечном волокне расположены вокруг ядер и вдоль миофибрилл. Под электронным микроскопом миофибриллы состоят из нитей миофиламентов актниовых, более тон ких (диаметром около 57 нм) и более толстых миозиновых (диаметром около 1020 нм).
Актиновые миофиламенты, содержащие белок актин, образуют изотропные диски (I). Это светлые, не обладающие двойным лучепреломлением диски. В центре дисков I проходит Z-линия телофрагма. Эта линия делит диск I на два полудиска. В области Z-линий расположены так называемые триады. Триады состоят из трубчатых элементов Т-трубочек, образованных вдавлением плазмолеммы внутрь мышечного волокна. По этим трубочкам нервный импульс поступает к миофибриллам. В каждой триаде одна Т-трубочка контактирует с двумя терминальными цистернами саркоплазматической сети, что обеспечивает выброс ионов кальция, необходимых для сократительного акта. В области Z-линий диска I сходятся концы актиновых миофиламентов. Миозиновые миофиламенты, содержащие белок миозин, образуют анизотропные (А) темные диски, обладающие двойным лучепреломлением. В центре диска А проходит М-линия мезофрагма. В М-линни сходятся концы миозиновых миофибрилл и обнаружена сеть канальцев саркоплазматической сети. Чередование в миофибриллах темных и светлых дисков придает мышечному волокну поперечную исчерченность. Структурной единицей миофибрилл является миомер (саркомер) это участок миофибриллы между двумя Z-линиями. Его формула А+21/2I.
По современным представлениям в каждом мышечном волокне различают: сократительный аппарат, состоящий из мнофибрилл, включающих актиновые и миозиновые миофиламенты; трофический аппарат, в который входит саркоплазма с ядрами и органеллами; специальный мембранный аппарат триад; опорный аппарат, включающий сарколемму с эндомизием и мембранными структурами линий Z и М; и, наконец, нервный аппарат, представленный двигательными нервно-мышечными окончаниями моторными бляшками и чувствительными нервными окончаниями нервно-мышечными веретенами.
В скелетной мышечной ткани различают белые и красные мышечные волокна. Белые мышечные волокна содержат мало саркоплазмы и миоглобина и много мнофибрилл. На поперечном срезе в белых мышечных волокнах хорошо видны плотно расположенные миофибриллы. Они обеспечивают сильное, но непродолжительное сокращение. Красные мышечные волокна содержат много саркоплазмы и, следовательно, много миоглобина и мало миофибрилл. На поперечном срезе в таких мышечных волокнах миофибриллы расположены рыхло в виде групп, образуя многоугольники, получившие название полей Конгейма. Эти поля разделены друг от друг прослойками саркоплазмы. Красные мышечные волокна содержат много митохондрий, они способны к длительному сокращению. В каждой скелетной мышце, как органе, имеются и белые, и красные мышечные волокна. Однако их соотношение в разных мышечных группах неодинаково.
Каждое мышечное волокно окружено снаружи прослойкой рыхлой волокнистой соединительной ткани, получившей название эндомизия (endomysium). Группы мышечных волокон окружены перимизием (perimysium), а сама мышца плотной соединительнотканной оболочкой эпимизием (epimysium).
Поперечнополосатая скелетная мышечная ткань способна к регенерации. Сокращение мышечной ткани трактуется с позиции теории скольжения: актиновые миофиламенты вдвигаются, скользит между миозиновыми.
3.2. Сердечная мышечная ткань
Сердечная мышечная ткань (textus muscularis cardiacus) это поперечнополосатая (исчерченная) мышечная ткань. Однако она имеет ряд существенных в своем строении отличий от скелетной мышечкой ткани. Развивается эта ткань из висцерального листка мезодермы, точнее, из так называемой миоэпикардиальной пластинки. Структурной единицей сердечной мышечной ткани являются поперечнополосатые клетки сердечные миоциты или кардиомиоциты (miocyti cardiaci) с одним или двумя ядрами, расположенными в центре. По периферии цитоплазмы в кардиомиоцитах расположены миофибриллы, имеющие такое же строение, как и в скелетном мышечном волокне. Вокруг ядра и вдоль миофибрилл располагается большое количество митохоидрий (саркосом). Кардиомиоциты отделены друг от друга вставочными дисками (disci intercalati), образованными десмосомами и щелевыми контактами. Кардиомиоциты посредством этих дисков объединяются конец в конец в сердечные мышечные волокна, анастомозирующие между собой и сокращающиеся как единое целое. В сердечной мышечной ткани различают кардиомиоциты, сократительные или типичные и проводящие или атипичные, составляющие проводящую систему сердца. Проводящие кардиомиоциты более крупные, содержат меньше миофибрилл и митохондрий. Их ядра часто расположены эксцентрично.

Общая характеристика нервной ткани
Нервная ткань (textus nervosus) это высокоспециализированный вид ткани. Состоит нервная ткань из двух компонентов: нервных клеток (нейронов или нейроцитов) и нейроглии. Последняя занимает все промежутки между нервными клетками. Нервные клетки обладают свойствами воспринимать раздражения, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их. Этим и определяется гистофизиологическое значение нервной ткани в корреляции и интеграции тканей, органов, систем организма и его адаптации. Источником развития нервной ткани является нервная пластинка, представляющая собой дорзальное утолщение эктодермы зародыша.
1. Нервные клетки нейроны
Структурно-функциональной единицей нервной ткани являются нейроны или нейроциты. Под этим названием подразумевают нервные клетки (их тело перикарион) с отростками, образуюшими нервные волокна (вместе с глией) и заканчивающимися нервными окончаниями. В настоящее время в широком смысле в понятие нейрон включают и окружающую его глию с сетью кровеносных капилляров, обслуживающих этот нейрон. В функциональном отношении нейроны классифицируют на 3 вида: рецепторные (афферентные или чувствительные), - генерирующие нервные импульсы; эффекторные (эфферентные) побуждающие ткани рабочих органов к действию: и ассоциативные, образующие разнообразные связи между нейронами. Особенно много ассоциативных нейронов в нервной системе человека. Из них состоит большая часть полушарий головного мозга, спинной мозг и мозжечок. Подавляющее большинство чувствительных нейронов расположено в спинномозговых узлах. К эфферентным нейронам относятся двигательные нейроны (мотонейроны) передннх рогов спинного мозга, имеются также и особые неросекреторные нейроны (в ядрах гипоталамуса), вырабатывающие нейрогормоны. Последние поступают в кровь и спинномозговую жидкость и осуществляют взаимодействие нервной и гуморальной систем, т. е. осуществляют процесс их интеграции (таблица 10).
Характерной структурной особенностью нервных клеток является наличие у них двух видов отростков аксона и дендритов. Аксон единственный отросток нейрона, обычно тонкий, мало ветвящийся, отводящий импульс от тела нервной клетки (перикариона). Дендриты, напротив, приводят импульс к перикариону, это обычно более толстые и более ветвящиеся отростки. Количество дендритов у нейрона колеблется от одного до нескольких в зависимости от типа нейронов. По количеству отростков нейроциты подразделяются на несколько видов. Одноотростчатые нейроны, содержащие только аксон, называют униполярными (у человека они отсутствуют). Нейроны, имеющие 1 аксон и 1 дендрит, получили название биполярных. К ним относятся нервные клетки сетчатки глаза и спиральных ганглиев. И, наконец, имеются мультиполярные, многоотростчатые нейроны. Они имеют один аксон и два и более дендрита. Такие нейроны наиболее распространены в нервной системе человека. Разновидностью биполярных нейроцитов являются псевдоуниполярные (ложноодноотростчатые) чувствительные клетки спинномозговых и краниальных узлов. По данным электронной микроскопии аксон и дендрит этих клеток выходят сближенно, тесно примыкая друг к другу, из одного участка цитоплазмы нейрона. Это создает впечатление (при оптической микроскопии на импрегннрованных препаратах) о наличии у таких клеток всего лишь одного отростка с последующим его Т-образным делением.
Ядра нервных клеток округлые, имеют вид светлого пузырька (пузырьковидные), лежащего обычно в центре перикариона. В нервных клетках имеются все органеллы общего значения, в том числе и клеточный центр. При окрашивании метиленовым синим, толуидиновым синим и крезиловым фиолетовым в перикарионе нейрона и начальных отделах дендритов выявляются глыбки разной величины и формы. Однако в основание аксона они никогда не заходят. Это хроматофильная субстанция (субстанция Ниссля или базофильное вещество) получила название тигроидного вещества. Оно является показателем функциональной активности нейрона и, в частности, синтеза белка. Под электронным микроскопом тигроидное вещество соответствует хорошо развитой гранулярной эндоплазматической сети, нередко с правильно ориентированным расположением мембран. Это вещество содержит значительное количество РНК, РНП, липидов. иногда гликоген.
При импрегнации солями серебра в нервных клетках выявляются очень характерные структуры нейрофибриллы. Их относят к органеллам специального значения. Они образуют густую сеть в теле нервной клетки, а в отростках располагаются упорядоченно, параллельно длине отростков. Под электронным микроскопом в нервных клетках выявляются более тонкие нитчатые образования, которые на 23 порядка тоньше нейрофибрилл. Это, так называемые нейрофиламенты и нейротубулы. По-видимому, их функциональное значение связано с распространением по нейрону нервного импульса. Имеется предположение, что они обеспечивают транспорт нейромедиаторов по телу и отросткам нервных клеток.
2. Нейроглия
Вторым постоянным компонентом нервной ткани является неироглия (neuroglia). Под этим термином подразумевают совокупность особых клеток, расположенных между нейронами. Нейроглиальные клетки выполняют опорно-трофическую, секреторную и защитную функции. Нейроглия подразделяется на два основных вида: макроглию, представленную глиоцитами, происходящими из нервной трубки и микроглию. включающую глиальные макрофаги, являющиеся производными мезенхимы. Глиальных макрофагов часто называют своеобразными “санитарами” нервной ткани, т. к. они обладают выраженной способностью к фагоцитозу. Глиоциты макроглии, в свою очередь, классифицируют на три типа. Один из них представлен эпендимиоцитами, выстилающими спинно-мозговой канал и желудочки мозга. Они выполняют разграничительную и секреторную функции. Имеются также астроциты клетки звездчатой формы, проявляющие выраженную опорно-трофическую и разграничительную функции. И, наконец, различают так называемые олигодендроциты. которые сопровождают нервные окончания и участвуют в процессах рецепции. Эти клетки окружают также тела нейронов, участвуя в обмене веществ между нервными клетками и кровеносными сосудами. Олигодендроглиоциты образуют также оболочки нервных волокон, и тогда они носят название леммоцитов (швановских клеток). Леммоциты принимают непосредственное участие в трофике и проведении возбуждения по нервным волокнам, в процессах дегенерации и регенерации нервных волокон.
3. Нервные волокна
Нервные волокна, (neurofibrae) бывают двух видов: миелиновые и безмиелиновые. Оба типа нервных волокон имеют единый план строения и представляют собой отростки нервных клеток (осевые цилиндры), окруженные оболочкой из олнгодендроглии леммоцитов (шванновских клеток). С поверхности к каждому волокну примыкает базальная мембрана с прилегающими к ней коллагеновыми волокнами.
Миелиновые волокна (neurofibrae myelinatae) имеют относительно больший диаметр, сложно устроенную оболочку их леммоцитов и большую скорость проведения нервного импульса (15120 м/сек). В оболочке миелинового волокна выделяют два слоя: внутренний, миелиновый (stratum myelini), более толстый, содержащий много липидов и окрашивающийся осмием в черный цвет. Он состоит из плотноупакованных по спирали вокруг осевого цилиндра слоев-пластин плазматической мембраны леммоцита. Наружный, более тонкий и светлый слой оболочки миелинового волокна, представлен цитоплазмой леммоцита с его ядром. Этот слой называют неврилеммой или шванновской оболочкой. По ходу миелинового слоя имеются косо идущие светлые насечки миелина (incisurae myelini). Это места, где между пластинами миелина проникают прослойки цитоплазмы леммоцита. Сужения нервного волокна, где отсутствует миелиновый слой, называют узловыми перехватами (nodi neurofibrae). Они соответствуют границе двух смежных леммоцитов.
Безмиелиновые нервные волокна (neurofibrae nonmyelinatae) более тонкие, чем миелиновые. В их оболочке, образованной тоже леммоцитами, отсутствует миелиновый слой, насечки и перехваты. Такое строение безмиелнновых нервных волокон обусловлено тем, что хотя леммоциты и охватывают осевой цилиндр, но они не закручиваются вокруг него. В один леммоцит при этом может быть погружено несколько осевых цилиндров. Это волокна кабельного типа. Безмиелиновые нервные волокна входят преимущественно в состав вегетативной нервной системы. Нервные импульсы в них распространяются медленнее (12 м/сек), чем в миелиновых, и имеют тенденцию к рассеиванию и затуханию.
4. Нервные окончания
Нервные волокна заканчиваются концевыми нервными аппаратами, называемыми нервными окончаниями (terminationes nervorum). Различают три вида нервных окончаний: эффекторы (эффекторные), рецепторы (чувствительные) и межнейронные связи синапсы.
Эффекторы (effectores) бывают двигательными и секреторными. Двигательные окончания представляют собой концевые аппараты аксонов моторных клеток (преимущественно передних рогов спинного мозга) соматической или вегетативной нервной системы. Двигательные окончания в поперечно-полосатой мышечной ткани называют нервно-мышечными окончаниями (синапсами) или моторными бляшками. Моторные нервные окончания в гладкой мышечной ткани имеют вид пуговчатых утолщений или четкообразных расширений. Секреторные окончания выявлены на железистых клетках.
Рецепторы (receptores) представляют собой концевые аппараты дендритов чувствительных нейронов. Одни из них воспринимают раздражение из внешней среды это экстерорецепторы. Другие получают сигналы от внутренних органов это интерорецепторы. Среди чувствительных нервных окончаний по их функциональным проявлениям различают: механорецепторы, барорецепторы, терморецепторы и хеморецепторы.
По строению рецепторы подразделяют на свободные это рецепторы в виде усиков, кустиков, клубочков. Они состоят только из ветвлений самого осевого цилиндра и не сопровождаются нейроглией. Другой вид рецепторов это несвободные. Они представлены терминалями осевого цилиндра, сопровождаемыми нейроглиальными клетками. Среди несвободных нервных окончаний выделяют инкапсулированные, покрытые соединительнотканными капсулами. Это осязательные тельца Мейснера, пластинчатые тельца Фатер-Пачини и др. Второй разновидностью несвободных нервных окончаний являются неинкапсулированные нервные окончания. К ним относят осязательные мениски или осязательные диски Меркеля, залегающие в эпителии кожи и др.
Межнейрональные синапсы (synapses interneuronales) это места контактов двух нейронов. По локализации различают следующие виды синапсов: аксодендритические, аксосоматические и аксоаксональные (тормозные). Реже встречаются синапсы дендродендритические, дендросоматические и сомасоматические. В световом микроскопе синапсы имеют вид колечек, пуговок, булав (концевые синапсы) или тонких нитей, стелющихся по телу или отросткам другого нейрона. Это так называемые касательные синапсы. На дендритах выявляются синапсы, получившие название дендритических шипиков (шипиковый аппарат). Под электронным микроскопом в синапсах различают так называемый пресинаптический полюс с пресинаптической мембраной одного нейрона и постсинаптический полюс с постсинаптической мембраной (другого нейрона). Между этими двумя полюсами располагается синоптическая щель. На полюсах синапса часто сосредоточено большое количество митохондрий, а в области пресинаптического полюса и синаптической щели синаптических пузырьков (в химических синапсах).
По способу передачи нервного импульса различают химические. электрические и смешанные синапсы. В химических синапсах в синаптических пузырьках содержатся медиаторы норадреналин в адренэргнческих синапсах (темные синапсы) и ацетилхолин в холинэргических синапсах (светлые синапсы). Нервный импульс в химических синапсах передается с помощью этих медиаторов. В электрических (беспузырьковых) синапсах не имеется синаптических пузырьков с медиаторами. Однако в них наблюдается тесный контакт пре- и постсинаптических мембран. В этом случае нервный импульс передается с помощью электрических потенциалов. Найдены и смешанные синапсы, где передача импульсов осуществляется, видимо, обоими указанными путями.
По производимому эффекту различают возбуждающие и тормозные синапсы. В тормозных синапсах медиатором может быть гамма-аминомаслянная кислота. По характеру распространения импульсов различают дивергентные и конвергентные синапсы. В дивергентных синапсах импульс из одного места их возникновения поступает на несколько нейронов, не связанных последовательно. В конвергентных синапсах импульсы из разных мест возникновения поступают, наоборот, к одному нейрону. Однако в каждом синапсе всегда имеет место только одностороннее проведение нервного импульса.
Нейроны посредством синапсов объединяются в нейронные цепи. Цепь нейронов, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до двигательного нервного окончания, называется рефлекторной дугой. Существуют простые и сложные рефлекторные дуги.
Простая рефлекторная дуга образована всего двумя нейронами: первый чувствительный и второй двигательный. В сложных рефлекторных дугах между этими нейронами включены еще ассоциативные, вставочные нейроны. Различают также соматические и вегетативные рефлекторные дуги. Соматические рефлекторные дуги регулируют работу скелетной мускулатуры, а вегетативные обеспечивают непроизвольное сокращение мускулатуры внутренних органов.


II. Частная гистология (1995г)

Нервная система
Нервная система регулирует и координирует деятельность всех органов и систем организма и его взаимодействие с внешней средой.
Анатомически нервную систему подразделяют на центральную (головной мозг и спинной мозг) и периферическую (периферические нервные узлы, нервные стволы и нервные окончания). С физиологической точки зрения различают автономную (вегетативную) нервную систему, иннервирующую внутренние органы, железы, сосуды, и соматическую (цереброспинальную), регулирующую деятельность остальной части тела (скелетную мышечную ткань).
Морфологическим субстратом деятельности нервной системы является рефлекторная дуга. Это цепь двух и более нейронов различного функционального значения (афферентный, ассоциативные, эфферентный), расположенных в разных отделах нервной системы и связанных между собой посредством синапсов. Рефлекторная дуга проводит нервный импульс от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе. Рефлекторные дуги бывают вегетативными и соматическими, которые подразделяются на простые и сложные. Тела афферентных (первых) нейронов рефлекторных дуг расположены вне центральной нервной системы, но вблизи ее (спинномозговые, черепно-мозговые ганглии), тела же всех ассоциативных (промежуточных) и всех эфферентных (последних) нейронов (за исключением немногих, принадлежащих к вегетативной нервной системе находятся в центральной нервной системе (ЦНС). Самая простая соматическая рефлекторная дуга состоит из первого - чувствительного нейрона спинномозгового узла, и последнего - двигательного нейрона спинного мозга. Более сложные рефлекторные дуги между первым чувствительным и последним эфферентным нейроном имеют от одного до нескольких вставочных ассоциативных нейронов.
Нервная система, ее спинной и головной мозг, развивается из нервной трубки, а спинномозговые ганглии и периферические вегетативные узлы из ганглиозной пластинки. При этом головной мозг и органы чувств закладываются из краниального отдела нервной трубки, а из ее туловищного отдела спинной мозг.
Периферическая нервная система.
Периферические нервные стволы нервы это совокупность пучков миелиновых и безмиелиновых нервных волокон, как афферентных, так и эфферентных. Периферический нерв окружен снаружи плотной соединительнотканной оболочкой эпиневрием. Через эпиневрий в нерв проникают сосуды и нервные окончания. Внутри периферического нерва каждый отдельный пучок нервных волокон покрыт периневрием плотной оформленной пластинчатой соединительной тканью.
В последней чередуются слои плотно расположенных клеток (типа фибробластов) и тонких фибрилл. Между отдельными нервными волокнами (миелиновыми и безмиелиновыми) располагаются тонкие прослойки соединительной ткани, называемые эндо-неврием.
Нервные узлы представляют собой скопления нервных клеток, расположенных вне ЦНС. Различают чувствительные (спинномозговые, черепномозговые) и вегетативные нервные узлы. Нейроны вегетативных узлов мультиполярные, эфферентные, в отличие от псевдоуниполярных чувствительных в спинномозговых ганглиях. То что касается вегетативных ганглиев, симпатические нервные узлы располагаются обычно вне органа, а парасимпатические интрамурально, в стенке органа.
Чувствительные спинномозговые ганглии лежат по ходу задних корешков спинного мозга. С поверхности ганглий покрыт соединительнотканной оболочкой, от которой отходят внутрь узла тонкие соединительнотканные прослойки с сосудами и нервами. По периферии органа группами располагаются округлые тела чувствительных псевдоуниполярных нейронов, окруженные мантийными глиоцитами с крупными светлыми ядрами. Снаружи от мантийных глиоцитов имеется соединительнотканная оболочка (капсула), клетки которой содержат небольшие темноокрашенные уплощенные ядра. В центре узла происходят нервные волокна отростки нейронов. Дендриты нейроцитов этого узла в составе чувствительной части смешанных спинномозговых нервов идут на периферию, образуя там чувствительные нервные окончания рецепторы. Аксоны же образуют задние корешки спинного мозга, входят в спинной мозг, где заканчиваются синапсами на ассоциативных нейронах (в случае двучленной дуги на двигательных) или поднимаются по заднему канатику в продолговатый мозг и образуют синапсы на нейронах ядер нежного и клиновидного пучков.
Центральная нервная система.
Спинной мозг. Источником развития является туловищный отдел нервной трубки, в боковых стенках которой на определенном этапе развития дифференцируются три зоны. Внутренняя эпендимная, из нее развивается эпендима, выстилающая спинномозговой канал, средняя плащевой слой, формирующий серое вещество с нейроцитами и наружная зона краевая вуаль, из которой возникает белое вещество спинного мозга. Из нейробластов передних рогов дифференцируются двигательные нейроны ядер передних рогов, аксоны которых, выйдя из спинного мозга, формируют его передние корешки. В промежуточной зоне и задних столбах появляются ядра, состоящие из ассоциативных, вставочных нейронов, аксоны которых в белом веществе спинного мозга войдут в состав различных проводящих пучков. Задние корешки спинного мозга формируются из аксонов чувствительных клеток спинномозговых ганглиев. Эти аксоны, войдя в задние рога спинного мозга, образуют синапсы на его вставочных нейронах.
Спинной мозг, как и головной, покрыт оболочками: мягкой мозговой оболочкой с сосудами и нервами в ее рыхлой соединительной ткани. Она непосредственно примыкает к спинному мозгу. Затем следует тонкий слой рыхлой соединительной ткани паутинная оболочка. Между этими оболочками располагается подпаутинное (субарахноидальное) пространство с тонкими соединительнотканными волокнами, связывающими две оболочки. Это пространство с цереброспинальной жидкостью сообщается с желудочками мозга. Наружная оболочка твердая мозговая оболочка, состоящая из плотной соединительной ткани, сращена с надкостницей в полости черепа. В спинном мозге имеется эпидуральное пространство между надкостницей позвонков и твердой мозговой оболочкой, заполненное рыхлой волокнистой соединительной тканью, что придает некоторую подвижность оболочке. Между твердой мозговой оболочкой и паутинной имеется субдуральное пространство с небольшим количеством жидкости. Субдуральное и субарахноидальное пространства изнутри покрыты слоем плоских глиальных клеток.
Строение спинного мозга. Для спинного мозга характерна сегментарность, а также то, что он представлен двумя симметричными половинками ограниченными спереди вентральной срединной щелью, а сзади соединительнотканной дорзальной срединной перегородкой. Снаружи в спинном мозге расположено белое вещество, состоящее из нейроглии, сосудов и большого количества нервных волокон. Пучки нервных волокон (преимущественно миелиновых) осуществляют связь между различными отделами нервной системы и составляют проводящие пути. Белое вещество подразделено рогами серого на канатики: передние, или вентральные, задние, или дорзальные, и боковые, или латеральные. В центре спинного мозга имеется более темное серое вещество, которое имеет цельное строение в виде бабочки. Правая и левая половины серого вещества соединяются серой спайкой, в которой располагается центральный спинномозговой канал, выстланный эпендимой. Выступы серого вещества на срезе спинного мозга называют рогами. В действительности это непрерывные столбы серого вещества, тянущиеся вдоль спинного мозга. Выделяют передние (вентральные), задние (дорзальные) и боковые (латеральные) рога серого вещества спинного мозга. В сером веществе спинного мозга располагаются на нейроглиальной основе с сосудами мултиполярные нейроны. Для серого вещества спинного мозга характерна ядерная организация сходные по структуре и функциям нейроциты располагаются группами, формируя ядра.
Нейроциты ядер передних рогов являются двигательными нейронами, мотонейронами, а в задних и боковых рогах расположены ассоциативные нейроны. При этом латеральное ядро бокового рога вегетативное ядро, которое в тороколюмбальном отделе представлено симпатическими нейроцитами, а в сакральном парасимпатическими нервными клетками.
По особенностям структуры среди нейроцитов спинного мозга выделяют несколько типов: корешковые, внутренние и пучковые. Нейриты корешковых нейронов (нейроны передних рогов и вегетативного латерального ядра боковых рогов) выходят из спинного мозга в составе его передних корешков. Отростки внутренних клеток заканчиваются синапсами в пределах серого вещества спинного мозга. Аксоны пучковых нейронов (в задних рогах и медиальном ядре боковых рогов) идут в белом веществе обособленными пучками нервных волокон, проводящими нервные импульсы от ядер спинного мозга в другие его сегменты или в головной мозг, образуя проводящие пути.
В задних рогах (небольших по объему) латерально располагается губчатый слой с мелкими вставочными нейронами на широко-петлистом глиальном остове, затем желатинозное вещество с небольшим количеством мелких нейронов. Кроме этого в заднем роге большое количество мелких вставочных, диффузно расположенных нейронов. Все вышеперечисленные нейроны задних рогов связывают чувствительные клетки спинномозговых ганглиев с двигательными нейронами передних рогов, замыкая местные рефлекторные дуги. В середине заднего рога имеется собственное ядро заднего рога. Аксоны его вставочных нейронов переходят на противоположную сторону в боковой канатик белого вещества, где они входят в состав вентральных спинномозжечковых и спинноталамических путей и направляются в мозжечок и зрительный бугор. В основании заднего рога располагается грудное ядро (дорзальное Кларка) с крупными вставочными нейронами. Аксоны этих нейронов идут в боковой канатик белого вещества той же стороны и в составе дорзального спинномозжечкового пути направляются к мозжечку.
В промежуточной зоне (между задними и передними рогами) выделяют промежуточное медиальное и промежуточное латеральное вегетативное ядро. Аксоны нейронов промежуточного медиального ядра присоединяются к вентральному спинномозжечковому пути той же стороны. Аксоны же вегетативных нейронов латерального промежуточного ядра вместе с аксонами двигательных нейронов передних рогов в составе передних корешков покидают спинной мозг. В передних (массивных) рогах расположены крупные корешковые мотонейроны (100140 мкм), формирующие латеральную и медиальную группы ядер моторные соматические центры. Нейриты этих нервных клеток покидают спинной мозг в составе передних корешков, затем в составе смешанных спинномозговых нервов идут на периферию, где заканчиваются двигательными нервными окончаниями моторными бляшками на поперечнополосатых мышечных волокнах. Медиальная группа мотонейронов иннервирует мышцы туловища, а латеральная, находящаяся в области шейного и поясничного утолщений мышцы конечностей.
При деструкции нейронов передних рогов и корешков наступает паралич, атония, арефлексия и атрофия поперечнополосатых мышц.
Кроме ядер в сером веществе спинного мозга диффузно расположены мелкие пучковые нервные клетки коротких собственных путей спинного мозга. Их аксоны сразу по выходу из серого в белое вещество делятся на восходящую и нисходящую ветви, при- лежащие к серому веществу и формирующие собственные (основные) пучки белого вещества (три пары). Коллатерали и сами ветви заканчиваются синапсами на двигательных клетках передних рогов.
Проводящие пути. Различают короткие и длинные проводящие пути. Короткие проводящие пути собственного аппарата спинного мозга осуществляют связи на уровне спинного мозга (без участия головного). Рефлекторная дуга собственного аппарата спинного мозга обычно представлена тремя (реже двумя нейронами: чувствительным и двигательным. Например, рефлекторная дуга коленного рефлекса). Первый нейрон чувствительный (псевдоуниполярный нейрон спинномозгового ганглия), второй вставочный ассоциативный (мелкие рассеянные клетки серого вещества спинного мозга) и последний нейрон двигательный (передние рога спинного мозга). Длинные проводящие пути объединяют спинной и головной мозг, обеспечивая их двустороннюю связь. В свою очередь длинные пути подразделяют на восходящие, проходящие в задних и боковых канатиках (несут импульсы от спинного мозга в головной) и нисходящие, в передних и боковых канатиках (связывают головной мозг с двигательными нейронами спинного мозга). Различают нисходящие пирамидные пути (проводят импульсы от коры больших полушарий головного мозга к двигательным нейронам спинного мозга) и нисходящие экстрапирамидные (несущие импульсы от ядер ствола к двигательным нейронам спинного мозга).
По восходящим путям проводится болевая, температурная, глубокая и тактильная чувствительность. Это спинно-таламический путь, дорзальный и вентральный спинно-мозжечковые пути, нежный и клиновидный пучки. К нисходящим пирамидным путям относится кортико-спинальный путь, образованный аксонами крупных пирамид ганглионарного и полиморфного слоев. На уровне перехода продолговатого мозга в спинной происходит неполный перекрест волокон. Поэтому мотонейроны передних рогов получают корковые болевые импульсы от пирамидного пучка (бокового) своей стороны и от пирамидного пучка (переднего) противоположной стороны. При поражении пирамидного пучка исключаются корковые аппараты и сохраняются двигательные аппараты передних рогов. Но вследствии исключения тормозного влияния коры рефлексы оказываются повышенными и мышцы более напряженными (парезы, гипертонус, гиперрефлекция, отсутствие атрофии мышц). Экстрапирамидные нисходящие пути представлены руброспинальным путем, берущим начало от красного ядра и проводящим импульс от ядер мозжечка, а также текто-спинальным, начинающимся от покрышки и проводящим импульсы от зрительных и слуховых путей, а также вестибуло-спинальным путем, берущим начало от ядер вестибулярного нерва и несущего импульсы статического характера.
Головной мозг представлен полушариями большого мозга и стволом мозга. В головном мозге распределение серого и белого вещества более сложное, чем в спинном мозге. Небольшая часть серого вещества образует большое количество ядер ствола, большая же часть серого вещества в головном мозге расположена на поверхности большого мозга и мозжечка, формируя их кору.
Ствол мозга является продолжением спинного мозга и включает в свой состав продолговатый мозг, мост, мозжечок, средний и промежуточный мозг. В стволе не имеется сегментации, как в спинном мозге, серое вещество представлено ядрами. Ядра ствола (переключательные и ядра черепных нервов) состоят из мультиполярных нейронов.
Продолговатый мозг. В его дорзальной части, образуя дно 4-го желудочка, располагаются ядра черепных нервов, причем двигательные занимают медиальное положение, а чувствительные латеральное. Посередине этих ядер располагается одно из переключательных ядер нижние оливы переключательный пункт из спинного мозга и ствола в мозжечок. Нижние оливы, содержащие крупные мультиполярные нейроны, играют важную роль в распределении мышечного тонуса. Центральную часть продолговатого мозга занимает ретикулярная формация, начинающаяся в спинном мозге и продолжающаяся в стволе через продолговатый мозг, мост, средний мозг, центральные части зрительного бугра, гипоталамус и другие области. В сети нервных волокон разного направления в ретикулярной формации располагаются небольшие группы мультиполярных нейронов разной величины. Ретикулярная формация является сложным рефлекторным центром, контролирующим тонус мышц, стереотипные движения, оказывает активизирующее влияние на кору больших полушарий, связывает разные отделы ЦНС. Белое вещество в продолговатом мозге занимает вентролатеральное положение. В вентральной части располагаются пирамиды продолговатого мозга пучки нервных волокон кортико-спинальных путей. Латеральное положение занимают веревочные тела-волокна спинно-мозжечковых путей, направляющиеся в мозжечок. Отростки нейроцитов ядер клиновидного и тонкого пучков в виде внутренних дуговых линий идут через ретикулярную формацию, перекрещиваясь по средней линии и образуя шов, направляются к зрительному бугру.
Мозжечок это центральный орган равновесия и координации движения. Посредством трех пар ножек (афферентные и эфферентные проводящие пучки) связан со стволом. Большая часть серого вещества располагается на поверхности мозжечка, образуя его кору. Небольшая часть серого вещества образует ядра мозжечка, располагаясь в глубине белого вещества. Поверхность мозжечка имеет много бороздок и извилин. В глубине каждой извилины расположено белое вещество с нервными волокнами, покрытое с поверхности серым веществом корой. Для коры мозжечка характерно слоистое расположение нейроцитов. Различают три слоя нейронов в коре мозжечка: наружный молекулярный, средний ганглионарный и внутренний зернистый. Средний слой состоит из расположенных в один ряд тел грушевидных нейроцитов (клеток Пуркинье). Нейриты грушевидных клеток уходят в белое вещество, к ядрам мозжечка, образуя начальное звено афферентных тормозных путей мозжечка. Обильно ветвящиеся дендриты клеток Пуркинье располагаются в наружном молекулярном слое в плоскости, перпендикулярной направлению извилин. Молекулярный слой представлен тормозными ассоциативными мелкими и крупными звездчатыми и корзинчатыми нейронами. Аксоны звездчатых нейронов образуют синапсы с дендритами грушевидных клеток. Тела корзинчатых клеток, имеющих вытянутую форму, располагаются в нижней части молекулярного слоя в отличие от звездчатых нейронов. Коллатерали аксонов корзинчатых клеток и ветви нейритов крупных звездчатых клеток спускаются в нижележащий слой и образуют корзинчатые нервные сплетения (корзинки) вокруг тел грушевидных клеток. Дендриты клеток молекулярного слоя располагаются в этом же слое. Ассоциативные корзинчатые и звездчатые нейроны молекулярного слоя передают тормозные импульсы на дендриты и тела грушевидных нейроцитов в плоскости, поперечной извилинам. Зернистый слой состоит из мелких ассоциативных клеток зерен и тормозных больших звездчатых нейронов. Тела клеток зерен и их дендриты располагаются в зернистом слое, а их аксоны идут в молекулярный слой и Т-образно ветвясь, образуют там параллельные волокна. Дендриты клеток зерен в зернистом слое ветвятся наподобие птичьей лапки и образуют синапсы с приходящими в слой афферентными моховидными волокнами, формируя при этом клубочки мозжечка. Большие звездчатые нейроны с короткими нейритами являются тормозными клетками. Их аксоны располагаются в зернистом слое и заканчиваются там тормозными синапсами в клубочках мозжечка, на дендритах клеток зерен проксимальнее синапсов с моховидными волокнами. Дендриты же больших звездчатых клеток зернистого слоя идут в молекулярный слой и- образуют синапсы с аксонами клеток зерен (с параллельными волокнами). Грушевидные нейроны мозжечка получают афферентные импульсы по двум системам моховидным и лазящим (лиановид-ным) волокнам. Последние передают импульс непосредственно на дендриты грушевидных нейронов, оплетая их в виде лиан и образуя при этом синапсы. Моховидные волокна передают импульсы на грушевидные нейроны через вставочные клетки зерна. Затем по парралельным волокнам посредством синапсов, с дендритами клеток Пуркинье, а также с дендритами тормозных клеток молекулярного слоя и больших звездчатых нейронов зернистого слоя возбуждение с моховидных волокон поступает на ганглиозные грушевидные клетки, и одновременно на тормозные клетки мозжечка. Нейроны тормозящей системы коры мозжечка молекулярного слоя (звездчатые и корзинчатые клетки) по поперечным волокнам и зернистого (большие звездчатые нейроны) по параллельным волокнам могут препятствовать тормозному влиянию грушевидных нейронов на ядра мозжечка, органичивая возбуждение грушевидных клеток.
Таким образом, сложная система межнейрональных связей мозжечка обеспечивает грушевидные клетки как возбуждающими так и тормозными импульсами. Мозжечок видоизменяет и организует потоки этих импульсов так, чтобы регулировать и координировать движения, в которых участвуют различные группы мышц. Кора мозжечка содержит различные глиальные элементы: волокнистые и плазматические астроциты, олигодендроглиоциты, глиальные макрофаги. Грушевидные нейроны очень чувствительны к действию ядов, алкоголю. Деструкция грушевидных нейроцитов приводит к расстройству координации движений, изменению походки.
Кора больших полушарий головного мозга образована снаружи слоем серого вещества в 25 мм, глубже располагается белое вещество с нервными волокнами, нейроглией, сосудами. Для новой коры-неокортикса характерно слоистое расположенние нейронов. Нейроны неокортикса мультиполярные и ассоциативные нейроны. Они разнообразны по величине и форме: пирамидные, горизонтальные, звездчатые, паукообразные, веретенообразные. Однако наиболее типичными для коры большого головного мозга человека являются пирамидные нейроны. Количество нейронных слоев в коре большого мозга, а также форма и размеры составляющих из нейронов неодинаковы в разных участках коры. Изучает эти вопросы раздел науки о мозге, называемый цитоархитектоникой.
В двигательной зоне коры большого мозга выделяют шесть слоев (пластинок) нейронов: наружный молекулярный, далее наружный зернистый слой, пирамидный, внутренний зернистый, ганглионарный слой и полиморфных клеток. Молекулярный слой беден клетками. Состоит преимущественно из дендритов нейронов нижележащих слоев, образующих тангенциальное (параллельное поверхности) сплетение нервных волокон. В наружном зернистом слое преобладают мелкие пирамидные и звездчатые нейроны. Третий пирамидный слой хорошо развит в прецентральной извилине и представлен в основном пирамидами средней величины. От ее верхушки отходит главный дендрит, идущий в молекулярный слой. От боковых поверхностей пирамиды берут начало баковые дендриты, образующие синапсы с соседними клетками этого слоя. Аксон отходит от основания, у малых пирамидных нейронов он остается в коре, а у крупных обычно формирует ассоциативное или комиссуральное волокно, идущее в белое вещество. Внутренний зернистый слой образован мелкими звездчатыми нейронами. Хорошо выражен этот слой в зрительной коре, а в двигательной может отсутствовать. Ганглионарный слой коры представлен крупными, а в прецентральной зоне гигантскими пирамидами Беца, достигающими 120 мкм в высоту. Их аксоны образуют главную часть кортико-нуклеарных и кортикоспинальных путей и заканчиваются на двигательных нейронах. Шестой слой полиморфных клеток состоит из нейронов, разных по величине и форме. В наружной зоне слоя содержатся более крупные клетки, чем во внутренней. Аксоны нейронов этого слоя уходят в белое вещество, а дендриты в молекулярный слой. Внутри коры между нейронами образуются сложные связи. Области коры, отличающиеся цитоархитектоникой (строением, нейронным составом, количеством клеточных слоев) и миелоархитектоникой (расположением нервных волокон), а также глио- и ангиоархитектоникой (расположением и структурой глии и сосудов) и функциональным значением называются полями. Несколько полей представляют собой корковые части анализаторов. Существуют различные типы коры: гранулярные и агранулярные. Так в гранулярном типе коры развиты второй и четвертый нейронные слои, а в агранулярном типе третий, пятый, шестой слои. Первый тип коры характерен для чувствительных зон например зрительной коры, а второй тип для моторных (область прецентральной извилины). Нейроны коры большого мозга как бы выстраиваются друг под другом, образуя структурно-функциональные единицы в виде вертикальных колонок-модулей, диаметром около 300 мкм. Модуль организован вокруг кортикального волокна, идущего от пирамидных клеток того же (ассоциативного) или противоположного (комиссурального) полушария. Морфологически модуль образован группой (гнездом) крупных пирамид ганглионарного слоя, гроздью гранулярных клеток, заключенных в концевые сплетения афферентных восходящих волокон, ориентированных вокруг кортико-кортикальных волокон, окруженных сплетением капилляров, формирующих своеобразные “бочонки”. Функционально такой модуль представляет собой целое созвездие “созвучно” работающих элементов, своеобразный комбинаторный центр локализации анализаторной функции. Кора больших полушарий представляет собой сложную мозаику работающих с разной активностью модулей. Всего в коре больших полушарий человека около 3 млн. модулей. Основой для формирования модулей служат, так называемые, онтогенетические колонки. В эмбриогенезе дифференцировка и миграция нейронов в формирующуюся кору вдоль радиально ориентированных волокон эмбриональной глии происходит группами нейронов, имеющих вид колонок.
Автономная (вегетативная) нервная система
Автономная нервная система, регулирующая висцеральные функции организма, подразделяется на симпатическую и парасимпатическую, оказывающие различное влияние на иннервируемые вместе органы нашего организма. И в симпатической, и в парасимпатической системе есть центральные отделы, имеющие ядерную организацию (ядра серого вещества головного и спинного мозга), и периферические (нервные стволы, ганглии, сплетения). К центральным отделам парасимпатической нервной системы относят вегетативные ядра 3, 7, 9, 10 пар черепно-мозговых нервов и промежуточные латеральные ядра крестового отдела спинного мозга, а к симпатической нервной системе корешковые нейроны промежуточных латеральных ядер серого вещества тораколюмбального отдела позвоночника.
Центральные отделы автономной нервной системы имеют ядерную организацию и состоят из мультиполярных ассоциативных нейроцитов вегетативных рефлекторных дуг. Для вегетативной рефлекторной дуги, в отличие от соматической, характерна двучленность ее эфферентного звена. Первый преганглионарный нейрон эфферентного звена вегетативной рефлекторной дуги располагается в центральном отделе вегетативной нервной системы, а второй в периферическом вегетативном ганглии. Аксоны вегетативных нейронов центральных отделов, называемые преганглионар-ными волокнами (и в симпатическом и в парасимпатическом звене обычно миелиновые и холинергические) идут в составе передних корешков спинного мозга или черепных нервов и дают синапсы на нейронах одного из периферических вегетативных ганглиев. Аксоны нейронов периферических вегетативных ганглиев, называемые постганглионарными волокнами, заканчиваются эффекторными нервными окончаниями на гладких миоцитах во внутренних органах, сосудах, железах. Постганглионарные нервные волокна (обычно безмиелиновые) в симпатической нервной системе адренергические, а в парасимпатической холинергические. Периферические узлы вегетативной нервной системы, состоящие из мультиполярных нейронов, могут находиться вне органов симпатические паравертебральные и превертебральные ганглии, парасимпатические узлы головы, а также в стенке органов интрамуральные ганглии в стенке пищеварительной трубки и других органах. Ганглии интрамуральных сплетений содержат кроме эфферентных нейронов (как и другие вегетативные ганглии) чувствительные и вставочные клетки местных рефлекторных дуг. Три основных типа клеток выделяют в интрамуральных нервных сплетениях. Длинноаксонные эфферентные нейроны клетки первого типа, имеющие короткие дендриты и длинный аксон, покидающий ганглий. Равноотростчатые, афферентные нейроны клетки второго типа, содержат длинные дендриты и поэтому их аксоны морфологически различить не удается. Аксоны этих нейроцитов (показано экспериментально) образуют синапсы на клетках первого типа. Клетки третьего типа ассоциативные, отдают свои отростки в соседние ганглии, заканчиваясь на дендритах их нейронов. В желудочно-кишечном тракте располагается несколько интрамуральных сплетений: подслизистое, мышечное (самое крупное) и подсерозное. В мышечном сплетении обнаружены холинергические нейроны, возбуждающие двигательную активность, тормозные адренергические и пуринергические (неадренергические) с крупными электронно-плотными гранулами. Кроме этого имеются пептидэргические нейроны, выделяющие гормоны. Постганглионарные волокна нейронов интрамуральных сплетений в мышечной ткани органов образуют терминальные сплетения, содержащие варикознорасширенные аксоны. Последние содержат синаптические пузырьки мелкие и светлые в холинергических мионевральных синапсах и мелкие гранулярные в адренергических.


Общая характеристика и классификация органов чувств

Органы чувств являются периферическими частями анализаторов, осуществляющих связь центральной нервной системы с внешней и внутренней средой. В каждом анализаторе различают три части: периферическую часть анализатора, где происходит восприятие (рецепция) с помощью особых белков-рецепторов, встроенных в плазмолему клеток, воспринимающих раздражение; промежуточную часть, образованную проводящими путями и подкорковыми образованиями, и центральную часть участок коры головного мозга, где происходит окончательный анализ и синтез воспринятого ощущения.

В связи с особенностями развития, строения и функции различают три типа органов чувств: к первому тину относят орган зрения и орган обоняния, которые закладываются в эмбриогенезе как части нервной пластинки. В основе их строения лежат нейросенсорные рецепторные клетки (первичночувствующие), имеющие дендриты и аксоны. Ко второму типу относят орган вкуса, равновесия и слуха. Эти органы закладываются в эмбриогенезе из утолщений эктодермы - плакод. Специализированные эпителиальные клетки (сенсоэпителиальные) этих органов воспринимают раздражения и передают нервным клеткам, которые в связи с этим называют вторичночувствующими. К третьему типу органов чувств относится группа рецепторных окончаний (например, осязательные, пластинчатые тельца), являющихся периферическими частями соответствующих анализаторов (осязания, давления и пр.).

Орган зрения глаз состоит из глазного яблока, соединенного посредством зрительного нерва с мозгом, и вспомогательного аппарата, включающего в себя веки, слезный аппарат, поперечно-полосатые глазодвигатвльные мышцы. В функциональном отношении в глазном яблоке различают три основных аппарата: 1. диоптрический или светопреломляющий аппарат роговица, жидкость передней камеры глаза, хрусталик, жидкость задней камеры глаза и стекловидное тело; 2. аккомадационный аппарат радужная оболочка, ресничное тело с ресничным пояском и 3. рецепторный аппарат сетчатая оболочка.

В структуре глазного яблока имеются три оболочки: наружная фиброзная склера и роговица; сосудистая средняя с собственно сосудистой оболочкой, ресничным телом и радужкой; и внутренняя (сенсорная) сетчатая. Также в глазное яблоко входят хрусталик, стекловидное тело и жидкость передней и задней камер глаза.

Развивается глаз из нескольких источников: зачатков нервной трубки, эктодермы и мезенхимы (таблица 1.)

Фиброзная оболочка наружная оболочка глаза, выполняет защитную и опорную функции. Она представлена непрозрачной склерой плотной пластинчатой соединительной тканью, переходящей в передней части глаза в прозрачную роговицу. В месте перехода склеры в роговицу имеются небольшие полости, сообщающиеся между собой. Это шлемов канал венозный синус склеры.

Сосудистая оболочка средняя оболочка глаза, основой которой является рыхлая соединительная ткань с сосудами и пигментными клетками. Эта оболочка подразделяется на три части: собственно сосудистую оболочку, ресничное тело и радужку. Собственно сосудистая оболочка осуществляет трофическую роль. В ней различают четыре слоя: надсосудистую пластинку, сосудистую пластинку, в рыхлой соединительной ткани которой залегает множество артерий, вен, пигментных клеток, а также отдельные пучки гладких миоци-тов; сосудисто-капиллярную пластинку с гемокапиллярами преимущественно синусоидного типа и базальный комплекс на границе между сосудистой оболочкой и пигментным слоем сетчатки.

Сетчатка. Ее наружный и внутренний листки развиваются из соответственных стенок глазного бокала, а зрительный нерв образуется из нейритов ганглиозных клеток сетчатки, пронизывающих глазной стебелек. Хрусталик развивается из эктодермы. Склера и сосудистая оболочка имеют мезенхимное происхождение. В развитии стекловидного тела и радужки принимают участие мезенхима, сосуды и эмбриональная сетчатка. Мышцы, суживающие и расширяющие зрачок, имеют нейральное происхождение.

Диоптрический аппарат глаза система прозрачных, светопреломляющих сред и структур. Роговица. В роговице различают пять слоев: передний эпителий, переднюю пограничную пластинку, собственное вещество роговицы, заднюю пограничную пластинку, задний эпителий. Передний эпителий лежит на базальной мембране, представлен многослойным плоским неороговевающим эпителием. Передняя пограничная пластинка имеет фибриллярное строение. Собственное вещество роговицы составляет около 90% всей толщи роговицы. Оно представлено правильно чередующимися и располагающимися под углом соединительнотканными пластинками, образованными параллельно идущими пучками коллагеновых волокон. Между пластинками и внутри них расположены отростчатые клетки типа фибробластов. Эти клетки и соединительнотканные пластинки погружены в аморфное вещество, богатое гликозами-ногликанами (кератинсульфатами), придающими прозрачность роговице. В роговице отсутствуют сосуды. Питательные вещества диффундируют в роговицу из передней камеры глаза и кровеносных сосудов лимба. Задняя пограничная пластинка представлена коллагеновыми волокнами, погруженными в аморфное вещество. Задний эпителий состоит из плоских полигональных клеток.

Хрусталик представляет собой двояковыпуклое тело, изменяющее форму во время аккомодации. Он покрыт прозрачной капсулой. Передняя стенка хрусталика состоит из однослойного плоского эпителия клетки которого по направлению к экватору становятся выше и образуют ростковую зону хрусталика. Ее новые эпителиальные клетки преобразуются в прозрачные хрусталиковые волокна, имеющие вид шестиугольной призмы и содержащие белок кристаллин. В центральной части хрусталика волокна укорачиваются, теряют ядра и образуют ядро хрусталика. С возрастом наблюдается помутнение хрусталика. В настоящее время разработаны методы создания и пересадки искусственных хрусталиков.

Стекловидное тело расположено между хрусталиком и сетчатой оболочкой и представляет собой массу прозрачного, студнеобразного вещества, содержащего витреин и гиалуроновую кислоту. Эти вещества придают прозрачность и тургор стекловидному телу.

Аккомодационный аппарат глаза с помощью изменения формы хрусталика обеспечивает фокусировку изображения на сетчатке в связи с интенсивностью освещения. Радужная оболочка является производным сосудистой оболочки глаза. В радужке различают пять слоев: передний эпителий, наружный пограничный слой (бессосудистый), сосудистый слой, внутренний пограничный слой и пигментный эпителий. Радужка осуществляет свою функцию диафрагмы с помощью двух мышц суживающей и расширяющей зрачок. Ресничное цилиарное тело участвует в акте аккомодации, изменяя кривизну хрусталика. В ресничном теле различают две части: внутреннюю цилиарную корону и наружную цилиарное кольцо. От цилиарной короны по направлению к хрусталику отходят цилиарные отростки, контактирующие с волокнами ресничного пояска радиально расположенными пучками нерастяжимых волокон круговой связки. Волокна этой связки прикрепляются к капсуле хрусталика. Основой реснитчатого тела является рыхлая соединительная ткань, в которой располагаются в трех взаимно перпендикулярных направлениях гладкие миоциты. Их сокращение приводит к расслаблению волокон круговой связки. Хрусталик становится более выпуклым и глаз аккомодируется на более близкое расстояние.

Рецепторный аппарат глаза. Сетчатка. В сетчатке, имеющей слоистое строение, различают два листка: наружный пигментный, образованный пигментоцитами, и внутренний, представляющий собой цепь трех радиально расположенных нейронов: наружного нейросенсорного светочувствительного нейрона, среднего ассоциативного биполярного и внутреннего ганглионарного мультиполярного нейрона. Во внутреннем листке сетчатки различают следующие слои: слой палочек и колбочек (дендриты нейросенсорных клеток); наружный пограничный слой (периферические концы глиоцитов сетчатки); наружный ядерный слой (тела нейросенсорных нейронов); наружный сетчатый слой (синапсы аксонов нейросенсорных клеток с дендритами вторых, ассоциативных, биполярных нейронов); внутренний ядерный (тела вторых ассоциативных биполярных нейронов); внутренний сетчатый (синапсы аксонов биполярных нейронов с дендритами ганглиозных клеток); ганглионарный слой (ядросодержащие части третьих, ганглиозных, мультиполярных нейронов); слой нервных волокон (аксоны ганглиозных клеток) и внутренний пограничный слой (внутренние отростки глиоцитов сетчатки). Таким образом, ядерные и ганглионарные слои сетчатки соответствуют телам нейронов, сетчатые слои синапсам, контактам их отростков. Следует особое внимание обратить на слой палочек и колбочек. Палочки и колбочки представляют собой периферические отростки дендриты палочковых и колбочковых нейросенсорных клеток. Каждый отросток состоит из двух частей: внутреннего и наружного сегментов, соединенных ресничкой. Колбочковые нейросенсорные клетки отличаются от палочковых клеток большим объемом, строением наружного и внутреннего сегментов и зрительным пигментом. В мембранах дисков (отшнуро-ванных от плазмолеммы) наружных сегментов палочек, содержится зрительный пигмент родопсин. Он состоит из белка опсипа и ретиналя альдегида витамина А. При недостаточности витамина А диски разрушаются и наступает “куриная слепота”. В наружных сегментах колбочковых клеток, в их полудисках (связанных с плазмолеммой) содержится зрительный пигмент йодопсин. Во внутренних сегментах колбочек (помимо органелл, как и в палочках) имеется эллипсоид-липидная капля, окруженная митохондриями. Колбочки являются рецепторами дневного зрения, а палочки сумеречного. Ресинтез родопсина идет в темноте.

При изучении задней стенки глаза следует обратить внимание на так называемое слепое пятно место выхода зрительного нерва и желтое пятно место наилучшего видения глаза. В области слепого пятна или диска зрительного нерва все слои сетчатки отсутствуют, за исключением слоя нервных волокон аксонов ганглиозных нейронов, которые, перегибаясь вместе, формируют валик, окружающий центральное углубление. Это место выхода на внутреннюю поверхность сетчатки сосудов, питающих сетчатую оболочку глаза. Особенностью кровоснабжения является наличие двух сосудистых систем: ретинальной снабжающей сетчатку и зрительный нерв, и цилиарной, питающей сосудистую оболочку, реснитчатое тело и склеру. В области желтого пятна (его углубленный центр называется центральной ямкой) все слои сетчатки, кроме наружного ядерного, раздвинуты для прямого хода световых лучей к слою палочек и колбочек. Желтое пятно расположено у заднего конца оптической оси глаза.

Самый наружный слой сетчатки представлен пигментным слоем, состоящим из полигональных клеток, считающихся разновидностью специализированных макрофагов центральной нервной системы. Пигментоциты содержат меланосомы, фагосомы, микропероксисомы и поэтому участвуют в защитных реакциях, тормозящих перекисное окисление липидов, а также в фагоцитозе наружных сегментов фотосенсорных клеток. Они также участвуют в поглощении 90% света, попадаемого в глаз (что понижает распад родопсина), снабжают фоторецепторные клетки ретинолом для биосинтеза родопсина. Таким образом, обеспечивая фоторецепторный процесс, пигментоциты повышают разрешающую способность глаза. Апикальные отростки пигментоцитов с микроворсинками заходят в следующий глубже расположенный слой палочек и колбочек. На свету меланосомы перемещаются в апикальные отростки меланоцитов, экранируя палочки, а в темноте меланосомы перемещаются обратно в цитоплазму меланоцитов. На эти процессы влияет гормон меланотропин.

Глаз человека, его сетчатка является инвертированной луч света сначала проходит все диоптрические среды и толщу сетчатки, чтобы попасть на рецепторные окончания нейросенсорных клеток.

Орган обоняния

Орган обоняния образуется из обонятельных ямок, отделяющихся от нервной пластинки. Из клеток стенок обонятельных ямок формируются поддерживающие и базальные эпителиоциты, а также нейросенсорные обонятельные клетки, располагающиеся в виде эпителиоподобной выстилки в области верхней и средней раковины носовой полости. Рецепторные, нейросенсорные клетки имеют короткие периферические отростки-дендриты и длинные центральные аксоны, составляющие обонятельный нерв, идущий в обонятельные луковицы. Дистальные части периферических отростков обонятельных клеток заканчиваются утолщениями обонятельными булавами с 1012 подвижными обонятельными ресничками. Поддерживающие клетки с многочисленными микроворсинками отделяют друг от друга обонятельные клетки и располагаются в виде многорядного эпителиального пласта. Поддерживающие клетки также участвуют в апокриновой секреции, необходимой для функционирования обонятельных клеток. Базальные клетки служат источником регенерации рецепторных клеток. Поступающие в полость носа молекулы пахучих веществ растворяются в секрете желез, располагающихся в подлежащей рыхлой волокнистой соединительной ткани обонятельной выстилки. Секрет этих желез, а также поддерживающих клеток, омывает обонятельные реснички. Растворенные в секрете пахучие вещества воспринимаются рецепторными белками, вмонтированными в мембрану рецепторной клетки.

Орган вкуса относится ко второму типу органов чувств, содержащих сенсоэпителиальные рецепторные клетки. Орган вкуса представлен вкусовыми почками, располагающимися в многослойном эпителии желобоватых, листовидных и грибовидных сосочков языка. Источником развития вкусовых почек является эмбриональный эпителий сосочков языка. Вкусовая почка имеет овальную форму и состоит из плотно прилегающих друг к другу 4060 клеток трех типов: рецепторно-вкусовых сенсорных эпителиоцитов, поддерживающих и базальных клеток. Вершина почки сообщается с поверхностью языка при помощи отверстия вкусовой поры, которая открывается во вкусовую ямку. На апикальном конце вкусовой клетки (сенсоэпителиальной) имеются микроворсинки, между которыми выявляется высокая активность фосфатаз, белка, мукопротеидов, адсорбирующих вкусовые вещества. Из подлежащей соединительной ткани во вкусовую почку входят нервные волокна, образующие синапсы на базальных отделах сенсорных эпителиоцитов. Вкусовые вещества, растворенные в слюне, приводят в возбуждение рецепторные сенсорные клетки вкусовых почек, импульсы от которых передаются по нервным путям в следующие звенья вкусового анализатора, (см. таблицу 2).

Орган слуха и равновесия (преддверно-улитковый орган)

В состав преддверно-улиткового органа входят наружное, среднее и внутреннее ухо, воспринимающее звуковые, гравитационные, вибрационные стимулы линейных и угловых ускорений. В наружном ухе различают ушную раковину, наружный слуховой проход, барабанную перепонку. Среднее ухо представленно барабанной полостью, слуховыми косточками, слуховой трубой. У млекопитающих и человека рецепторные клетки органа слуха и равновесия располагаются во внутреннем ухе в перепончатом лабиринте, ограниченном костным лабиринтом. При этом волосковые сенсорные эпителиоциты органа слуха находятся в улитковом лабиринте, в спиральном органе улитки, а рецепторы органа равновесия в вестибулярном лабиринте в пятнах мешочков и гребешках полукружных каналов. В процессе эмбриогенеза перепончатый лабиринт внутреннего уха закладывается из парных утолщений эктодермы (слуховые и лабиринтные плакоды). Они погружаются в подлежащую мезенхиму и превращаются в слуховые пузырьки. Дифференцировка слуховых пузырьков приводит к разделению на два зачатка органа равновесия и органа слуха. Одновременно слуховой пузырек контактирует с эмбриональным слуховым нервным ганглием, который также делится на две части ганглий преддверия и ганглий улитки.

Спиральный орган. Орган слуха. Улитковый канал перепончатого лабиринта представляет собой спиральный, слепо заканчивающийся мешок, заполненный эндолимфой и окруженный снаружи перилимфой. На поперечном разрезе он имеет форму треугольника с верхнемедиальной стенкой в виде вестибулярной мембраны, наружной сосудистой полоской и нижней базилярной пластинкой. Вестибулярная мембрана это тонкофибриллярная соединительнотканная пластинка, покрытая однослойным плоским эпителием со стороны эндолимфы и эндотелием со стороны перилимфы . Наружная стенка, образована спиральной связкой, покрытой сосудистой полоской с многорядным эпителием и гемо-капиллярами, нижняя стенка это базилярная пластинка, с расположенным на ней спиральным органом, находится в основании улиткового канала между спиральной костной пластинкой и спиральной связкой. В базилярной пластинке различают три части: базальную мембрану для эпителия спирального органа, тонкофибриллярные непрерывные коллагеновые волокна (“струны”) и плоские клетки мезенхимного генеза со стороны барабанный лестницы. Утолщение надкостницы спиральной костной пластики образуют лимбсоединительнотканное образование. Поверхность и выемка (бороздка) лимба покрыта эпителием и ограничена двумя губами: нижней барабанной и верхней вестибулярной. От последней отходит покровная мембрана желатинозной консистенции, нависающая над волосковыми клетками. Под лимбом в основании спиральной костной пластинки расположен спиральный ганглий с биполярными нейронами.

Спиральный орган, воспринимающий звуки, состоит из сенсорных и поддерживающих, опорных клеток. Среди обеих групп различают внутренние и наружные клетки. Внутренние сенсорные клетки эпителиоциты, имеющие кувшинообразную форму с расширенным основанием, лежат в один ряд. Апикальная часть этих клеток покрыта кутикулой с короткими подвижными и уплотненными микроворсинками (волосками) стереоцилиями. Наружные волосковые клетки имеют цилиндрическую форму с округлым основанием. Они также несут на своей апикальной поверхности кутикулярную пластинку со слуховыми волосками-стереоцилиями. Наружные волосковые клетки лежат в три параллельных ряда, а в верхних завитках улитки их может быть 45 рядов. Наружные волосковые клетки значительно чувствительнее к звукам большой интенсивности, чем внутренние. Цитоплазма сенсорных клеток богата окислительными ферментами, монофосфоэстеразой, содержит РНК. Наружные сенсорные эпителиоциты содержат много гликогена, в их стереоцилиях обнаружена ацетилхолинэстераза. Своими основаниями волосковые клетки расположены во вдавлениях, образованных телами подлежащих опорных поддерживающих, фаланговых клеток. Если наружные и внутренние волосковые эпителиоциты располагаются на соответствующих опорных, фаланговых клетках, то опорные клетки лежат на базальной мембране. В их цитоплазме имеются тонофибриллы. В спиральном органе на базальной мембране расположена еще одна разновидность опорных клеток столбовые эпителиоциты внутренние (обращенные от туннеля к лимбу) и наружные (обращенные от туннеля к сосудистой полоске), которые, соприкасаясь своими вершинами, образуют внутренний туннель, заполненный эндолимфой. Через туннель проходят безмякотные нервные волокна, идущие от нейронов спирального ганглия к сенсорным клеткам. Терминали дендритов биполярных нейронов спирального ганглия подходят к основаниям сенсорных клеток и образуют синапсы. На базилярной мембране этого органа рядом с наружными фаланговыми располагаются наружные пограничные эпителиоциты, богатые гликогеном. Эти клетки выполняют трофическую функцию. Латеральнее их, также на базальной мембране, находятся наружные поддерживающие эпителиоциты клетки кубической формы, которые постепенно переходят в эпителий, выстилающий сосудистую полоску.

Звуковые воздействия с барабанной перепонки передаются на молоточек, наковальню и стремечко, а затем через овальное окно на перилимфу, базилярную и покровную мембраны. При этом происходит отклонение стереоцилий и возбуждение рецепторных клеток. Ацетилхолин, содержащийся в эндолимфе, взаимодействует с холинрецепторным белком, вмонтирвоанным в мембраны стереоцилий, а также с ацетилхолинэстеразой. Последняя разрушает аце-тилхолин. Это приводит к возникновению микрофонного эффекта. Далее афферентные нервные окончания биполярных нейронов спирального ганглия несут импульсы в вышележащие отделы слухового анализатора.

Орган равновесия. Вестибулярная часть перепончатого лабиринта. В вестибулярной части перепончатого лабиринта расположены рецепторы органа равновесия. Он состоит из двух мешочков сферического и эллиптического, сообщающихся при помощи узкого канала и связанных с тремя полукружными каналами. В местах соединения каналов с эллиптическим мешочком (маточка) имеются расширения ампулы. В ампулах и мешочках располагаются чувствительные (сенсорные) клетки. В мешочках эти участки называются пятнами (макулами), а в ампулах гребешками (кристами). Пятна мешочков представлены эпителием, расположенным на базальной мембране и состоящим из сенсорных и опорных клеток. Поверхность эпителия покрыта особой студенистой отолитовой мембраной со статокониями. Статоконии или отолиты состоят из кристаллов карбоната кальция.

Волосковые сенсорные клетки по строению подразделяются на два типа. Один из них грушевидные эпителиоциты с широким основанием, к которым примыкают нервные окончания в виде чаши. Клетки второго типа столбчатые, имеют призматическую форму, у их основания находятся точечные нервные окончания. На наружной поверхности этих клеток имеется кутикула, от которой отходят 6080 неподвижных волосков-стереоцилий и одна подвижная ресничка-киноцилия, контактирующие с отолитовой мембраной. При смещени киноцилии в сторону стереоцилий клетка возбуждается, а если движение направлено в противоположную сторону, то происходит торможение клетки. Полученные через афферентные синапсы импульсы передаются через вестибулярный нерв в соответствующие части вестибулярного анализатора. Поддерживающие клетки располагаются между сенсорными. Они отличаются овальными темными ядрами, имеют микроворсинки и большое количество митохондрий. Пятна воспринимают гравитацию (сила тяжести), линейные ускорения, а макула сферического мешочка к тому же воспринимает и вибрационные колебания.

Ампулярные гребешки (кристы). Они находятся в ампулярных расширениях полукружных каналов. Ампулярные гребешки состоят из таких же сенсорных и поддерживающих эпителиоцитов, как и пятна. Апикальная часть этих клеток окружена желатинообразным прозрачным куполом, лишенным полости. В этот купол входят волоски сенсорных клеток. Ампулярные гребешки воспринимают угловые ускорения (повороты тела и головы). Нервные волокна, разветвляющиеся вокруг волосковых клеток гребешков ампул и пятен, принадлежат биполярным чувствительным нейронам, находящимся в вестибулярном ганглии. Центральные отростки клеток ганглия направляются в продолговатый мозг и заканчиваются на клетках вестибулярных ядер. От этих клеток импульс поступает далее в вышележащие отделы анализатора.


Сердечно-сосудистая система

В состав жизненно важной сердечно-сосудистой системы входят сердце, кровеносные и лимфатические сосуды. Сосуды имеются почти во всех органах. Кровеносные сосуды играют большую роль в транспорте крови к органам и тканям, регулируют их кровоснабжение. Через стенку кровеносных капилляров происходит интенсивный обмен между кровью и тканями. Нарушение гистофизиологии сердца и сосудов, имеющихся почти во всех органах, приводит к патологии сердчено-сосудистой системы, что делает необходимым изучение этого раздела врачами всех специальностей.

Кровеносные сосуды делятся на артерии различных типов (таблица I), вены (таблица II) и сосуды микроциркуляторного русла: артериолы, венулы, капилляры и АВА, соединяющие артериальное и венозное русло. Также могут быть “чудесные сети” капилляры, соединяющие два одноименных сосуда, например, в клубочках почек. АВА соединяют артерии и вены, минуя капиллярное русло. Все сосуды имеют мезенхимное происхождение. Строение стенки сосудов, степень развития оболочек и принадлежность к тому или иному типу зависит от условий гемодинамики и функции сосуда.

Общий план строения стенки сосуда

Стенка сосуда состоит из трех оболочек: внутренней, средней и наружной. Внутренняя оболочка представлена эндотелием, субэндотелиальным слоем рыхлой, волокнистой неоформленной соединительной тканью, внутренней эластической мембраной (в артериях мышечного типа). Средняя оболочка состоит из гладких миоцитов и между ними расположенных эластических и коллагеновых волокон, а также эластических окончатых мембран (в артериях эластического типа). В артериях мышечного типа средняя оболочка отделена от наружной эластической мембраной. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью. В средней (у крупных сосудов) и наружной оболочках вен и артерий располагаются мелкие сосуды, кровоснабжающие сосудистую стенку, сосуды сосудов и нервные стволики. По диаметру сосуды подразделяются на сосуды крупного, среднего и мелкого калибра.

Артерия мышечного типа состоит из трех оболочек. Внутренняя оболочка представлена эндотелием, подэндотелиальным слоем и внутренней Эластической мембраной. Последняя отделяет внутреннюю оболочку от средней. Средняя оболочка наиболее развита в артериях. Она состоит из расположенных по спирали гладких миоцитов, обеспечивающих при своем сокращении уменьшение просвета сосуда, поддерживающих кровяное давление и проталкивание крови в дистальные отделы. Между миоцитами в небольшом количестве имеются преимущественно эластические волокна. На границе между наружной и средней оболочкой располагается наружная эластическая мембрана. Наружная оболочка состоит из рыхлой соединительной ткани с нервными волокнами и кровеносными сосудами. Эластический каркас, эластические волокна и эластические пограничные мембраны препятствуют спаданию артерий, что обеспечивает непрерывность тока крови в них.

Артерия эластического типа. Аорта. В ее мощной стенке три оболочки. Внутренняя состоит из эндотелия и подэндотелиального слоя с тонкофибриллярной соединительной тканью. В ней много гликозамингликанов и фосфолипидов. Подэндотелиальный слой имеет значительную толщину, в нем много звездчатых малодифферепцированных клеток. На границе со средней оболочкой располагается густое сплетение эластических волокон. Средняя оболочка очень широкая, представлена большим количеством эластических окончатых мембран и связанных с ними и между собой эластических волокон, которые вместе с эластическими волокнами внутренней и наружной оболочек составляют выраженный эластический каркас, смягчающий толчки крови во время систолы и поддерживающий тонус во время диастолы. Между мембранами имеются гладкие миоциты. Наружная эластическая мембрана отсутствует. В рыхлой волокнистой соединительной ткани наружной оболочки имеются эластические и коллагеновые волокна, сосуды сосудов и нервные стволики.

Вена мышечного типа. Ее стенка представлена тремя оболочками. Внутренняя состоит из эндотелия и подэндотелиального слоя. В средней оболочке пучки гладких миоцитов, между которыми преимущественно коллагеновые волокна. В наружной, наиболее широкой оболочке, в ее рыхлой волокнистой соединительной ткани сосуды и могут быть поперечно-срезанные гладкие миоциты. Просвет сосуда неправильной формы, в просвете видны эритроциты.

Отличия артерии мышечного типа от вены мышечного типа. Стенка артерий толще стенки соответствующих вен, в венах отсутствуют внутненняя и наружная эластические мембраны; самая широкая оболочка в атрериях средняя, а в венах наружная. Вены снабжены клапанами; в венах мышечные клетки в средней оболочке развиты слабее, чем в артериях, и расположены пучками, разделенными соединителыютканными прослойками, в которых преобладают коллагеновые волокна над эластическими. Просвет вены часто спавшийся и в просвете видны форменные элементы крови. В артериях просвет зияет и форменные элементы крови обычно отсутствуют.

Кровеносные капилляры. Самые тонкие и многочисленные сосуды. Их просвет может варьировать от 4,5 мкм в соматических капиллярах до 2030 мкм в синусоидных. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием. Встречаются еще более широкие капилляры капиллярные вместилища лакуны в пещеристых телах полового члена. Стенки капилляров резко истончены до трех тончайших слоев, что необходимо для обменных процессов. В стенке капилляров различают: внутренний слои, представленный эндотелиоцитами, выстилающими сосуд изнутри и расположенными на базаль-ной мембране; средний из отростчатых клеток-перицитов, находящихся в расщелинах базальной мембраны и участвующих в регуляции просвета сосуда. Наружный слой представлен тонкими коллагеновыми и аргирофильными волокнами и адвентициальными клетками, сопровождающими снаружи стенку капилляров, артериол, венул. Капилляры связывают артерии и вены.

Различают капилляры трех типов: 1. капилляры соматического типа (в коже, в мышцах), их эндотелий нефенестрирован, базальная мембрана сплошная; 2. капилляры висцерального типа (почки, кишечник), эндотелий их фенестрирован, но базальная мембрана непрерывна; 3. синусоидные капилляры (печень, кроветворные органы), с большим диаметром (2030 мкм), между эндотелиоцитами имеются щели, базальная мембрана прерывистая или может полностью отсутствовать, отсутствуют также структуры наружного слоя.

В микроциркуляторное русло кроме капилляров входят артериолы, венулы, а также артериоло-венулярные анастомозы.

Артериолы наиболее мелкие артериальные сосуды. Оболочки в артериолах и венулах истончены. В артериолах имеются компоненты всех трех оболочек. Внутренняя представлена эндотелием, лежащим на базальной мембране, средняя одним слоем гладких мышечных клеток, имеющих спиралевидное направление. Наружная оболочка образована адвентициальными клетками рыхлой соединительной ткани и соединительнотканными волокнами. Венулы (посткапиллярные) имеют только две оболочки: внутреннюю с эндотелием и наружную с адвентициальными клетками. Гладкие мышечные клетки в стенке сосуда отсутствуют.

Артериоло-венулярные анастомозы (АВА). Различают истинные АВА шунты, по которым сбрасывается артериальная кровь, и атипичные АВА полушунты, по которым течет смешанная кровь. Истинные анастомозы подразделяются на неимеющие специальных устройств и анастомозы, снабженные специальными запирательными устройствами. К последним относят артериоло-венулярные анастомозы эпителиодного типа, содержащие в средней оболочке клетки со светлой цитоплазмой. На их поверхности много неравных окончаний. Выделяют эти клетки ацетилхолин. Эти эпителиодные клетки способны набухать, а по мнению других авторов, сокращаются. В результате этого просвет сосуда закрывается. Анастомозы эпителиодного типа могут быть сложными (клубочковыми) и простыми. Сложные АВА эпителиоидного типа отличаются от простых тем, что приносящая афферентная артериола делится на 24 ветви, которые переходят в венозный сегмент. Эти ветви окружены одной общей соединительнотканной оболочкой (например, в дерме кожи и гиподерме). Также встречаются анастомозы замыкательного типа, у которых в подэндотелиальном слое в виде валиков имеются гладкие миоциты, выступающие в просвет и замыкающие его при своем сокращении. Большая роль принадлежит АВА в компенсаторных реакциях организма при нарушении кровообращения и развитии патологических процессов.

Лимфатические сосуды подразделяются на лимфатические капилляры, внутри и внеорганные лимфатические сосуды и главные лимфатические стволы: грудной проток и правый лимфатический проток. Лимфатические капилляры начинаются в тканях слепо. Их стенка состоит из крупных эндотелиоцитов. Базальная мембрана и перициты отсутствуют. С окружающей тканью эндотелий связан фиксирующиими филаментами, вплетающимися в окружающую соединительную ткань. Более крупные лимфатические сосуды по строению напоминают вены. Для них характерно наличие клапанов и хорошо развитой наружной оболочки. Среди лимфатических сосудов различают сосуды мышечного типа и лимфатические сосуды безмышечного волокнистого типа.

Сердце. Стенка сердца состоит из трех оболочек: эндокарда, миокарда и эпикарда. Эндокард выстилает изнутри камеры сердца и по строению напоминает стенку артерии. Развивается из мезенхимы. В нем различают следующие слои: 1. эндотелий, лежаший ни толстой базальной мембране, 2. субэндотелиальный слой, представленный рыхлой волокнистой соединительной тканью, 3. мышечно-эластический слой с гладкими миоцитами и эластическими волокнами, 4. наружный соединительнотканный слой, состоящий из соединительной ткани с толстыми коллагеновыми, эластическими и ретикулиновыми волокнами.

В сердце между предсердиями и желудочками, а также на границе желудочка с дугой аорты и легочной артерией расположены клапаны. Это тонкие соединительнотканные пластинки, покрытые эндотелием. На предсердной стороне предсердно-желудочкового (атриовентрикулярного) клапана под эндотелием расположено много эластических волокон, а на желудочковой стороне преобладают коллагеновые волокна. Последние продолжаются в сухожильные нити.

Миокаод (вместе с эпикардом) развивается из миоэпикардиальной пластинки, и состоит из поперечно-полосатой сердечной мышечной ткани. Она представлена типичными сократительными кардиомиоцитами, составляющими сократительный миокард, и атипичными проводящими сердечными миоцитами, образующими проводящую систему сердца. Сократительные кардиомиоциты имеют в центре 12 ядра и по периферии продольно расположенные миофибриллы. Путем вставочных дисков (десмосомы, щелевидные контакты) кардиомиоциты объединяются в сердечные мышечные волокна, анастомозирующие между собой. Продольные и боковые связи кардиомиоцитов обеспечивают сокращение миокарда как единого целого. Сократительные кардиомиоциты содержат много митохондрий, располагающихся как в центре, около ядра клеток, так и цепочками между миофибриллами. Хорошо развит пластинчатый комплекс Гольджи, эндоплазматическая сеть не образует терминальных цистерн, а вместо этого формирует терминальные расширения канальцев эндоплазматической сети, которые прилежат к мембранам Т-трубочек. Сердечная мышца богата ферментами, участвующими в окислительно-восстановительных процессах. Это в основном ферменты аэробного типа. В соединительной ткани миокарда среди ретикулярных, и в меньшей степени, коллагеновых и эластических волокон, залегает множество кровеносных и лимфатических сосудов.

Проводящая система сердца состоит из синусно-предсердного, предсердно-желудочкового узлов, предсердно-желудочкового пучка-ствола, правой и левой ножки и их ветвей. Состоят эти образования из проводящих сердечных миоцитов, хорошо иннервированных. Среди этих сердечных миоцитов различают Р-клетки водители ритма в синусном узле, переходные клетки атрио-вентрикулярного узла и клетки пучка проводящей системы и его ножек. Последние передают возбуждение от переходных клеток к сократительному миокарду. Проводящие сердечные миоциоты часто образуют скопления под эндокардом. Они имеют большие размеры и более светлую окраску (богаче саркаплазмой) по сравнению с сократительными сердечными миоцитами. Их ядра более крупные и эксцентрично расположены. Миофибрилл в проводящих сердечных миоцитах меньше и они располагаются по периферии. В проводящих сердечных миоцитах мало митохондрий, много гликогена, но меньше рибонуклепротеидов и липидов. Преобладают энзимы, принимающие участие в анаэробном гликолизе.

Эпикард это висцеральный листок перикарда, представленный тонкой соединительнотканной пластинкой. В ней расположены коллагеновые и эластические волокна, сосуды, нервные стволики. Свободная поверхность эпикарда покрыта мезотелием.



Общая характеристика органов кроветворения и иммунологической защиты

К органам кроветворения и иммунологической защиты причисляют: красный костный мозг, тимус, лимфатические узлы, селезенку, лимфатические узелки пищеварительного тракта и других органов. Их подразделяют на центральные красный костный мозг, тимус и пока точно не идентифицированный у млекопитающих аналог сумки Фабрициуса у птиц и периферические селезенка, лимфатические узелки и узлы, где происходит под влиянием антигенов антигензависимое размножение лимфоцитов. В центральных кроветворных органах, а именно в красном костном мозге, где имеются стволовые кроветворные клетки, происходит образование из них эритроцитов, тромбоцитов, моноцитов, гранулоцитов, В-лимфоцитов и предшественников Т-лимфоцитов. В тимусе же из предшественников Т-лимфоцитов образуются Т-лимфоциты, происходит антигеннезависимое размножение лимфоцитов в отличие от антигензависимого в периферических кроветворных органах.

Органы кроветворения и иммунологической защиты характиризуются общими морфофункциональными признаками: 1 основа их образована ретикулярной тканью (за исключением тимуса, где основой служит особая эпителиальная ткань); 2 в них происходит образование клеток крови; 3 депонируется кровь и лимфа; 4 в них содержатся фагоцитирующие и иммунокомпетентные клетки, осуществляющие защитные функции и элиминацию инородных частиц, бактерий, погибших клеток из организма.

Красный костный мозг. Костный мозг появляется у человека впервые в ключице эмбриона на 2 месяце развития. У взрослого человека различают красный и желтый костный мозг. Желтый костный мозг у взрослого человека находится в диафизах трубчатых костей. В его составе много жировых клеток и в обычных условиях в нем не происходит кроветворения в этом его основное различие с красным костным мозгом. В постнатальном периоде красный костный мозг является универсальным центральным органом гемопоэза, содержащим стволовые кроветворные клетки. Во взрослом организме красный костный мозг содержится в губчатом веществе плоских костей, в эпифизах трубчатых костей. В красном костном мозге происходит миэлопоэз (эритропозз, гранулопоэз, тромбопоэз, монопоэз), а также, возможно, образуются В-лимфоциты и предшественники Т-лимфоцитов. В основе красного костного мозга ретикулярная ткань, а в ней артериолы, синусы, капилляры, жировые клетки, макрофаги, стволовые клетки, клетки миелоидного ряда на разных стадиях развития, мегакариоциты гигантские клетки красного костного мозга, В-лимфоциты и предшественники Т-лимфоцитов. Кроветворные элементы красного костного мозга и его ретикулярная строма образуют “миелоидную” ткань или систему (отсюда патология “миелоидной” системы означает патологию костномозгового кроветворения). В норме и периферическую кронь проникают лишь созревшие форменные элементы крови. При заболеваниях крови в кровяном русле появляются незрелые клетки (например, эритробласты). Костный мозг обладает высокой регенерационной способностью. После облучения, оперативного удаления он может восстанавливаться из стволовых клеток, находящихся в тесном взаимодействии с ретикулярной основой и специальными ростостимулирующими факторами гемопоэза и нервными регуляторными механизмами.

Тимус (вилочковая или зобная железа) центральный орган лимфо- и иммунопоэза. Развивается тимус из эпителия глоточной кишки в области 3 и 4 пар жаберных карманов в конце первого эмбрионального месяца. На 7 неделе в эпителиальной строме появляются первые лимфоциты. В эпителиальную закладку на 811 неделе врастает мезенхима с кровеносными сосудами, подразделяя орган на дольки. В Тимусе из костномозговых предшественников происходит антигеннезависимое образование Т-лимфоцитов. Образовавшиеся в тимусе Т-лимфоциты с током крови попадают в периферические органы кроветворения, где образуют Т-зависимые зоны. Там при встрече с антигеном Т-лимфоциты размножаются и дифференцируются (антигензависимое размножение) в Т-эффек-торные клетки, обеспечивая реакции клеточного иммунитета и регулируя гуморальный иммунитет (антигенреактивные киллеры, хелперы, супрессоры).

Тимус покрыт соединительнотканной капсулой, от которой отходит внутрь органа соединительнотканные прослойки с сосудами и нервами, делящие тимус на дольки. Основа долек эпителиальная ткань, в петлях которой располагаются Т-лимфоциты. В дольке различают по периферии более темное корковое вещество с большей концентрацией лимфоцитов и лимфобластов, а в центре дольки более светло-окрашенное мозговое вещество. В мозговом веществе лимфоцитов меньше. Эти лимфоциты отличны от лимфоцитов коркового вещества. В мозговом веществе рециркулирующий пул Т-лимфоцитов (могут входить и выходить из кровотока).

Также в мозговом веществе расположены слоистые эпителиальные тимические тельца (тельца Гассаля). Они представлены концентрически расположенными эпителиоретикулоцитами с вакуолями, гранулами кератина и пучками фибрилл. Тимусом выделяется гормон тимозин, участвующий в регуляции пролиферации и дифференцировки лимфоцитов в периферических органах. Орган также выделяет в кровь ряд биологически активных факторов: инсулино-подобный (понижающий сахар крови), кальцитониноподобный (понижающий содержание кальция в крови) и фактор роста.

Тммус что орган детского возраста. После 20-летнего возраста происходит возрастная необратимая инволюция тимуса: уменьшение долек за счет исчезновения лимфоцитов, разрастание жировой ткани. В детском возрасте при действии экстремальных факторов (голодание, инфекции, травмы, интоксикации) может наступить акцидентальная инволюция тимуса. Она характери-зуется быстрой массовой гибелью лимфоцитов, особенно коркового вещества, разрастанием эпителиальной стромы, появлением эпителиальных слоистых телец и в корковом веществе. Это явление обратимое, железа восстанавливает свое строение при прекращении действия стрессового агента.

Лимфатические узлы периферические кроветворные органы, располагающиеся по ходу лимфатических сосудов. В них происходит антигензависимое размножение лимфоцитов, а также они выполняют иммунологическую защиту, очищая лимфу от болезнетворных и чужеродных агентов, и также депонируют лимфу. Первые закладки лимфатических узлов появляются на 23 месяце внутриутробного развития из размножающихся вокруг кровеносных и лимфатических сосудов мезенхимных клеток. На 16 неделе появляются кроветворные клетки, образующие узелки и тяжи. В-лимфоциты появляются раньше Т-лимфоцитов.

Лимфатический узел с поверхности покрыт соединительнотканной капсулой. От нее внутрь органа отходят трабекулы. Основа лимфоузла ретикулярная ткань. Орган подразделяют на периферически расположенное корковое вещество и центрально расположенное более светлое мозговое вещество. К корковому веществу относят совокупность лимфатических узелков и паракортикальную, расположенную между мозговым и корковым веществом Т-зону, где размножаются Т-лимфоциты. К мозговому веществу причисляют мозговые тяжи и синусы. Лимфатические узелки и мозговые тяжи являются В-зонами, где В-лимфоциты размножаются и трансформируются в плазмоциты, вырабатывающие антитела. Синусы лимфатического узла представляют собой пространства, ограниченные капсулой или трабекулой, с одной стороны, и узелками или мозговыми тяжами, с другой. Синусы выстланы эндотелиоретикулярными клетками со щелями, через которые в синус поступают лимфоциты. Синусы выполняют роль фильтров, в которых фагоцитирующими макрофагами, располагающимися между эндотелиоретикулоцитами синуса, задерживается большая часть антигенов. Кроме этого синусы обогащают лимфу незернистыми лейкоцитами. Синусы лимфатического узла подразделяют на подкапсульный или краевой (между капсулой и узелками), вокругузелковые корковые синусы (между трабекулами и узелками), мозговые синусы (между мозговыми тяжами и трабекулами), которые впадают в воротный синус.

Лимфатические узлы очень чувствительны к различным внешним и внутренним факторам, что отражается на их строении. Особенно это отражается на морфологии лимфатических узелков. Так, в разных физиологических состояниях появляются или исчезают в центре их светлые образования герминативные центры или центры размножения. Это связано с тем, что располагающиеся здесь лимфобласты могут находиться в различных стадиях деления. Эту часть узелка часто называют еще реактивным центром, так как, например, при микробных интоксикациях они реагируют появлением там множества фагоцитирующих элементов.

Селезенка периферический кроветворный орган, где происходит антигензависимое размножение лимфоцитов и активное участие в реакциях клеточного и гуморального иммунитета с образованием антител. В селезенке обезвреживаются антигены, незадержанные в лимфатических узлах, погибают старые и нежизнеспособные тромбоциты и эритроциты, вырабатывается вещество, угнетающее эритропоэз в красном костном мозге. Селезенка, так же как и лимфатические узлы с ретикулярной тканью и лимфоцитами, относится к лимфоидной ткани или лимфоидной системе органов. Закладывается селезенка на 5 неделе эмбрионального развития, как скопление мезенхимных клеток в толще дорзальной брыжейки, пронизанное кровеносными сосудами. Мезенхима в дальнейшем трансформируется в ретикулярную ткань, которая заселяется стволовыми клетками, появляются макрофаги. На 12 неделе эмбрионального развития появляются В-лимфоциты. В эмбриональном периоде до 6 месяца селезенка является универсальным кроветворным органом, но к моменту рождения человека усиливаются процессы лимфопоэза.

Соединительнотканная капсула селезенки с поверхности покрыта мезотелием. В капсуле много гладкомышечных клеток. Внутрь органа от капсулы отходят трабекулы, в которых располагаются трабекулярные артерии (мышечного типа), и трабекулярные вены (безмышечного типа). Основа органа ретикулярная ткань. В селезенке различают белую и красную пульпу. Белая пульпа это совокупность лимфатических узелков с эксцентрично расположенной в них артерией узелка или центральной артерией.

В лимфатических узелках имеется четыре зоны: периартериальная Т-зона / Т-лимфоциты/, центр размножения узелка В-зона /В-лимфоциты/, мантийная зона и краевая или маргинальная зона. В последних двух зонах присутствуют Т- и В-лимфоциты. Красная пульпа состоит из ретикулярной ткани, с расположенными в ней эритроцитами и другими форменными элементами крови, многочисленных кровеносных сосудов, а также селезеночных или пульпарных тяжей, где происходит плазмоцитогенез.

Кровоснабжение селезенки. В ворота селезенки входит селезеночная артерия, распадающаяся на трабекулярные артерии, дающие начало пульпарным артериям. Последние окружаются лимфоцитами и образуют артерии узелка или центральные артерии. Выйдя из узелка, они разветвляются в виде кисточки на кисточковые артериолы, дистальные концы которых образуют эллипсоидные артериолы, снабженные сфинктером муфтой из ретикулярных волокон и клеток. Эллипсоидные артериолы распадаются на артериальные гемокапилляры. Большая часть их в красной пульпе впадает в венозные синусы (закрытое кровоснабжение) путь быстрой циркуляции. Некоторые капилляры могут открываться прямо в ретикулярную ткань (открытое кровообращение) более медленный путь, обеспечивающий лучший, контакт клеток крови с макрофагами. С синусов начинается венозная система селезенки: пульпарные вены трабекулярные вены селезеночная вена. Синусы выстланы эндотелиальными клетками, расположенными на прерывистой базальной мембране. Между эндотелиоцитами расположены щели, через которые кровь может при растяжении синусов проходить в строму. В местах перехода синусов в сосуды имеются подобия мышечных сфинктеров, которые регулируют накопление крови в синусах, концентрацию в них клеточных элементов.


Понятие о пищеварительной системе

Пищеварительная система состоит из пищеварительной трубки и расположенных внутри ее и вне крупных желез (крупные слюнные железы, печень, поджелудочная железа), которые выделяют в полость трубки секрет и участвуют тем самым в процессе пищеварения. В пищеварительной трубке различают передний, средний и задний отделы. Передний отдел состоит из ротовой полости со всеми ее органами, глотки и пищевода. Средний отдел включает в свой состав желудок, тонкую и толстую кишку, печень и поджелудочную железу. Задний представлен каудальной частью прямой кишки. В переднем отделе пищеварительной системы происходит преимущественно механическая обработка и продвижение пищи; в среднем отделе осуществляется химическая обработка пищи и всасывание образующихся при этом продуктов, а также проталкивание химуса в следующие отделы пищеварительной трубки и формирование каловых масс. Задний отдел пищеварительного аппарата осуществляет эвакуацию непереваренных остатков пищи в виде каловых масс из пищеварительной трубки.

Источники развития пищеварительной системы. Структурные компоненты пищеварительной трубки развиваются в эмбриогенезе из различных зачатков. Из эктодермы образуется эпителий слизистой оболочки ротовой полости, слюнных желез и каудального отдела прямой кишки. Энтодерма формирует эпителий среднего отдела пищеварительного тракта, а также мелкие и крупные пищеварительные железы. Из висцерального листка спланхнотома образуется мезотелий серозной оболочки кишки. Соединительнотканные элементы, сосуды, гладкая мышечная ткань пищеварительной трубки закладываются из мезенхимы. Железы ротовой полости развиваются из эктодермального эпителия, а брюшной полости из энтодермы.

Общий план строения стенки желудочно-кишечного тракта

Стенка пищеварительного канала состоит из четырех основных оболочек слизистой, подслизистой основы, мышечной и серозной оболочек. Рельеф, поверхность слизистой оболочки пищеварительной трубки может быть гладкой (внутренняя часть губы и щеки), образовывать складки (пищевод, желудок, кишка), углубления (ямочки в желудке, крипты кишке), выросты (ворсинки в тонкой кишке). Слизистая оболочка состоит из трех пластинок:эпителиальной, собственной пластинки слизистой оболочки и мышечной пластинки слизистой оболочки. Тип эпителия слизистой оболочки варьирует в зависимости от функции отдела. В периднем и заднем отделах эпителий многослойный плоский, т. к. здесь он выполняет преимущественно защитную роль, а в среднем отделе эпителий однослойный цилиндрический. Железы могут быть расположены в эпителиальной выстилке (эндоэпителиально), например, бокаловидные клетки, в собственной пластинке слизистой оболочки, и подслизистой основе, либо за пределами пищеварительного канала (большие слюнные железы, печень, поджелудочная железа). Собственная пластинка слизистой оболочки располагается под эпителием и состоит из рыхлой волокнистой соединительной ткани с кровеносными и лимфатическими сосудами, нервными элементами и лимфатическими скоплениями. В пищеводе и желудке в ней расположены простые железы. Мышечная пластинка слизистой оболочки формируется из 13 слоев гладкомышечных клеток, расположенных, как правило, во внутреннем слое циркулярно, а в наружном продольно. Подслизистая основа соединяет слизистую оболочку с мышечной оболочкой и состоит из рыхлой волокнистой соединительной ткани, содержащей сплетения крупных кровеносных сосудов, подслизистое (мейснерово) нервное сплетение. В пищеводе и 12-перстной кишке в этой оболочке расположены сложные железы. Мышечная оболочка обычно представлена двумя слоями в стенке пищевода и кишечника (внутренним циркулярным, наружным продольным), а в желудке тремя слоями мышечной ткани. В переднем и заднем отделах мышечная ткань преимущественно поперечно-полосатая, а в среднем гладкая. Между слоями мышечной ткани находятся прослойки соединительной ткани с кровеносными и лимфатическими сосудами и межмышечным (ауэрбаховым) нервным сплетением. Серозная оболочка состоит из соединительнотканной пластинки с сосудами и нервными элементами и из мезотелия, лежащего снаружи. В некоторых отделах (большая часть пищевода, часть прямой кишки) серозная оболочка отсутствует, и пищеварительный канал в этих отделах покрыт адвентициальной оболочкой, состоящей из рыхлой волокнистой соединительной ткани с сосудами и нервными структурами.

Передний отдел пищеварительного аппарата включает в свой состав ротовую полость, глотку и пищевод. Основная функция переднего отдела состоит в механической переработке пищи, а также первоначальной химической обработке и проталкивании в следующий отдел. В ротовой полости имеются органы вкуса, апробирующие пищу, и миндалины, выполняющие защитную и кроветворную функции. В ротовой полости также располагаются: губы, щеки, десны, твердое и мягкое небо, язык, слюнные железы и зубы. Все органы ротовой полости покрыты постоянно увлажненной секретом желез слизистой оболочкой, состоящей из многослойного плоского неороговевающего эпителия (за исключением твердого неба, десен и нитевидных сосочков, где эпителий многослойный плоский ороговевающий) и собственной пластинки слизистой оболочки с большим количеством кровеносных сосудов. Мышечная пластинка слизистой оболочки, как таковая, отсутствует в ротовой полости. В некоторых участках ротовая полость не имеет подслизистой основы (десны, шов твердого неба, верхняя поверхность языка). В этих отделах слизистая оболочка располагается на поперечно-полосатой мышечной ткани ротовой полости (язык), или на кости (десны, область шва твердого неба). В слизистой оболочке ротовой полости имеются складки со скоплением лимфатических фолликулов миндалинами. В слизистой оболочке и в подслизистой основе ротовой полости могут быть расположены мелкие слюнные железы. В ротовую полость также открываются протоки больших слюнных желез околоушной, подчелюстной и подъязычной.

Губы. Губа представлена тремя частями: наружной - кожной следующей за ней переходной или промежуточной и внутренней слизистой. Кожная часть губы устроена как кожа: представлена многослойным плоским ороговевающим эпителием, волосяными фолликулами, сальными и потовыми железами. Переходная часть губы состоит из двух зон: наружной (гладкой) и внутренней (ворсинчатой). В наружной зоне эпителий становится тоньше и прозрачнее, исчезают потовые железы, а сохраняются только сальные. Внутренняя зона содержит очень высокий, лишенный рогового слоя многослойный эпителий. Сальные железы отсутствуют. Собственная пластинка слизистой оболочки образует очень высокие сосочки, в которых находятся многочисленные капилляры, просвечивающиеся через эпителий и придающие красный цвет губе, и нервные окончания. Слизистая часть губы представлена слизистой оболочкой с многослойным плоским неороговевающим эпителием и собственной пластинкой слизистой оболочки. Глубже располагается подслизистая основа со сложными слюнными губными железами. За подслизистой основой следует поперечно-полосатая мышечная ткань губной мышцы.

Щеки. Снаружи щеки покрыты кожей, а изнутри слизистой оболочкой. Во внутренней части щеки различают три зоны: верхнюю, или максилярную, среднюю-промежуточную и мандибулярную сходную по строению со слизистой частью губы. Слизистая оболочка щеки состоит из многослойного неороговевающего эпителия и собственной пластинки слизистой оболочки, состоящей из довольно плотной соединительной ткани с большим количеством эластических волокон. Слизистая оболочка переходит в подслизистую основу (с мелкими слюнными железами), плотно срастающуюся с межмышечными соединительнотканными прослойками щечной мышцы. В средней или промежуточной зоне щеки слюнные железы отсутствуют, но могут быть сальные, как в переходной части губы.

Десны. Слизистая оболочка выстлана плоским многослойным ороговевающим эпителием. В эпителий глубоко вдается высокими сосочками собственная пластинка слизистой оболочки. Слизистая оболочка десны плотно срастается с надкостницей верхней и нижней челюстей.

Твердое небо. Слизистая оболочка, выстилающая крышу ротовой полости выстлана многослойным плоским ороговевающым эпителием. Собственная пластинка слизистой оболочки содержит мощные пучки коллагеновых волокон, вплетающихся в надкостницу в области шва твердого неба. Кроме области шва в твердом небе различают еще две части, имеющие в своей стенке подслизистую основу. Это передняя жировая часть твердого неба с прослойками жировой ткани в подслизистой основе и задняя железистая часть со слизистыми железами в подслизистой основе.

Мягкое небо и язычок. В мягком небе мышечно-сухожильная основа покрыта слизистой оболочкой. Слизистая оболочка мягкого неба и язычка представлена многослойным плоским неороговевающим эпителием и собственной пластинкой слизистой оболочки. Между слизистое оболочкой и подслизистой основой расположен слой эластических волокон. В подслизистой основе имеются жировые клетки и слизистые слюнные железы. При переходе мягкого неба к задней, носовой поверхности эпителий становится однослойным призматическим многорядным мерцательным, содержащим бокаловидные клетки.

Язык. В языке различают тело и корень, посредством которого язык прикреплен к нижней челюсти. Основу языка составляет поперечно-полосатая мышечная ткань. Пучки поперечно-полосатых мышечных волокон располагаются в трех взаимноперпендикулярных направлениях. На границе между мышечным телом и собственной пластинкой слизистой оболочки верхней поверхности языка имеется мощная соединительнотканная пластинка апоневроз языка, состоящий из переплетающихся пучков коллагеновых и эластических волокон. Поверхность языка покрыта слизистой оболочкой. Слизистая оболочка верхней и боковых поверхностей языка неподвижна, так как сращена, с мышечным телом, на боковых и верхней поверхностях языка отсутствует подслизистая основа. Слизистая оболочка в этой области снабжена особыми образованиями сосочками. Различают четыре вида сосочков: нитевидные, грибовидные, окруженные валом или желобоватые и листовидные. Основу всех сосочков составляет соединительнотканный вырост собственной пластинки слизистой оболочки соединительнотканный сосочек. С поверхности этот соединительнотканный сосочек покрыт многослойным плоским неороговевающим эпителием за исключением нитевидных сосочков, где эпителий ороговевающий. В толще многослойного неороговевающего эпителия сосочков (кроме нитевидных), располагаются вкусовые почки, органы вкуса. На нижней поверхности языка сосочки отсутствуют. Эпителий слизистой оболочки этой поверхности языка многослойный плоский неороговевающий. За собственной пластинкой слизистой оболочки на нижней поверхности языка следует подслизистая основа, что обеспечивает подвижность слизистой оболочки этой части языка. В области корня языка слизистая оболочка образует складки со скоплениями лимфоидной ткани и собственной пластинке слизистой оболочки. Это язычная миндалина. Слюнные железы языка делятся на три вида: в теле языка белковые, в области корня слизистые, на кончике языка смешанные.

Зубы. В сформированных зубах различают: коронку, с полостью, заполненной пульпой, шейку, корень с корневым каналом. Зуб состоит из твердых и мягких тканей. К твердым тканям зуба относят эмаль, дентин, цемент, а пульпу и периодонт к мягким. Эмаль покрывает коронку зуба снаружи, состоит из эмалевых призм, содержащих кристаллы гидрооксиаппатита, и склеивающего межпризматического вещества. С поверхности эмаль покрыта кутикулой, которая, стираясь со временем, сохраняется только на боковых поверхностях зуба. Под эмалью расположен дентин, составляющий основную часть коронки, шейки и корня зуба. Он состоит из основного вещества с коллагеновыми волокнами и дентинных канальцев. В последних находятся цитоплазматические отростки одонтобластов клеток, тела которых расположены по периферии пульпы. Отложение солей в дентине происходит в виде шаровидных глобул-кристаллов гидрооксиаппатита. Дентин корня на всем протяжении покрыт снаружи цементом. По структуре цемент напоминает грубоволокнистую кость. Он состоит из клеток цементоцитов и основного вещества, в котором расположены коллагеновые волокна. В отличие от кости цемент не содержит кровеносных сосудов. Зуб укреплен в костной альвеоле периодонтом плотной соединительной тканью. Коллагеновые волокна этой связки проникают, с одной стороны, в цемент, а с другой, в альвеолярную кость. Костная ткань альвеол, периодонт и цемент формируют опорно-трофический аппарат зуба. В трофике зуба большая роль отводится пульпе зуба, располагающейся в полости коронки и корня зуба. Это своеобразная соединительная ткань с сосудами и нервными элементами. Она имеет слоистое строение. В пульпе различают три слоя: периферический одонтобластичсский. Он состоит из тел клеток одонтобластов, играющих важную роль в трофике дентина и эмали. Второй слой промежуточный с мелкими клетками и преколлагеновыми волокнами. Третий центральный слой пульпы представлен адвентициальпыми клетками, макрофагами, фибробластами, лежащими рыхло среди коллагеновых и аргирофильных волокон, сосудов и нервных элементов в основном веществе.

При развитии зуба различают три основные стадии: закладка и образование зубного зачатка, дифференцировка и третья гистогенез, образование твердых и мягких тканей зуба. Эмаль зуба и кутикула развивается из эпителия ротовой полости, дентин, цемент, пулы и периодонт из мезенхимы. Вначале происходит образование дентина, а затем и эмали. Развитие тканей корня зубов происходит позже, незадолго до прорезывания зубов. Развитие постоянных зубов происходит аналогично развитию молочных.

Миндалины. Лимфоэпителиальное глоточное кольцо Пирогова.

На границе ротовой полости и глотки располагаются складки слизистой оболочки со скоплением лимфоидной ткани миндалинами. Различают небные, трубные, глоточную, язычную и гортанную миндалины. Их совокупность формирует лимфоэпителиальное кольцо Пирогова. Миндалины выполняют в организме важную защитную функцию, в них образуются лимфоциты, участвующие в реакциях гуморального и клеточного иммунитета.

Небные миндалины. Миндалина состоит из складок слизистой оболочки, в собственной пластинке которой расположены многочисленные лимфатические узелки. От поверхности миндалины в глубь органа отходят несколько углублений крипт. Слизистая оболочка образована многослойным плоским неороговевающим эпителием и собственной пластинкой слизистой оболочки. Эпителий во многих местах инфильтрирован лимфоцитами и зернистыми лейкоцитами. В собственной пластинке слизистой оболочки расположены многочисленные лимфоидные узелки, в центре которых могут быть выражены более светлые участки герминативные центры. За слизистой оболочкой следует подслизистая основа. Она образует вокруг миндалины соединительнотканную капсулу. Здесь находятся основные лимфатические сосуды миндалины, нервы, а также слюнные железы. Глубже расположена поперечно-полосатая мышечная ткань. Другие миндалины имеют строение, сходное с небной миндалиной.

Слюнные железы. Кроме мелких слюнных желез губ, щек, языка в ротовую полость открываются выводные протоки трех пар больших слюнных желез: околоушных, подчелюстных и подъязычных. Все слюнные железы являются производными эктодермального эпителия ротовой полости. Поэтому для слюнных желез характерна многослойность их структур, как секреторных отделов, так и выводных протоков. Слюнные железы представляют собой сложные разветвленные альвеолярные и альвеолярно-трубчатые железы, имеющие дольчатое строение, особенно четко выраженное в околоушной железе. По характеру выделяемого секрета железы бывают: белковые или серозные (околоушная), белково-слизистые, смешанные с преобладанием белкового (подчелюстная) или слизистого компонента (подъязычная железа).

Слюнные железы выполняют многообразные функции. Одна из них заключается в регулярном отделении в ротовую полость компонентов слюны. Слюна облегчает процесс жевания, глотания и артикуляции. Слюнные железы являются мощным источником пищеварительных ферментов, многие из которых поступают почти исключительно со слюной. Смесь секрета всех слюнных желез называется слюной. В слюне присутствуют ферменты: птиалин, мальтаза, нуклеазы, гиалуронидаза, лизоцим, трипсиноподобные ферменты, пепсиноген, кислая и щелочная фосфатазы и др. Слюнные железы выполняют также эндокринную функцию. Они выделяют в кровь биологически активные вещества типа гормонов инсулина, паротина, фактора роста нервов, фактора роста эпителия, тимоцит-трансформирующего фактора, фактора летальности и другие.

Во всех больших слюнных железах имеются концевые секреторные отделы, клетки которых вырабатывают секрет, и система выводных путей. Последние имеют общий план строения в этих железах и представлены внутридольковыми вставочными и исчерченными протоками, междольковыми с многорядным эпителием и общими протоками желез со многослойным плоским эпителием. Вставочные протоки представляют собой очень мелкие тем-ноокрашенные трубочки, выстланные однослойным плоским или низким кубическим эпителием и окруженные снаружи миоэпителиальными клетками. Последние имеют эпителиальное происхождение и сократительную функцию. Сокращаясь, эти клетки способствуют выделению секрета. В исчерченных слюнных протоках однослойный призматический эпителий с оксифильной окраской клеток. В базальных концах эпителиоцитов между складками цитолеммы располагается много митохондрии, придающих этим протокам базальную исчерченность. Второй слой клеток представлен миоэпителиоцитами.

Концевые отделы слюнных желез могут быть трех типов: белковые (серозные), слизистые и смешанные (белково-слизистые). Белковые концевые отделы имеют базофильную окраску и состоят из невысоких, конической формы секреторных эпителиоцитов с округлыми ядрами в расширенных базальных частях клеток. Белковые клетки окружены снаружи миоэпителиальными клетками. Слизистые концевые отделы представлены высокими светлоокрашенными призматическими секреторными эпителиоцитами с уплощенными ядрами у базальных частей и миоэпителиальными клетками. Третий тип концевых отделов это смешанные концевые отделы. В центре смешанных концевых отделов располагаются светлые слизистые клетки, поверх которых в виде колпачков или полулуний располагаются более темные с округлыми ядрами белковые клетки. Снаружи полулуний имеются миоэпителиальные клетки. Во всех концевых отделах между секреторными клетками располагаются межклеточные секреторные канальцы. Отделение секрета клетками секреторных концевых отделов осуществляется по мерокриновому типу. Большие слюнные железы отличаются друг от друга в основном по концевым отделам: в околоушной железе имеются белковый концевые отделы, в подчелюстной белковые и смешанные, а в подъязычной белковые, слизистые и смешанные.

Пищевод. Пищевод построен из слизистой оболочки, подслизистой основы, мышечной и адвентициальной оболочек. Для рельефа слизистой оболочки пищевода характерно наличие продольных складок, в образовании которых помимо слизистой оболочки участвует и подслизистая основа. Слизистая оболочка состоит из многослойного плоского неороговевающего эпителия, поверхностные клетки которого, особенно с возрастом, содержат признаки ороговения (зерна кератогиалина); собственной пластинки слизистой оболочки и мышечной пластинки слизистой оболочки. Собственная пластинка слизистой оболочки представлена рыхлой неоформленной соединительной тканью с лимфоцитами. В ней располагаются кардиальные железы пищевода. Они лежат двумя группами: одна на уровне перстневидного хряща, другая около входа в желудок. Это простые разветвленные железы, напоминающие кардиальные железы желудка. Кардиальные железы пищевода содержат большое количество слизистых и эндокринных клеток.

Среди них различают: ЕС вырабатывающие серотонин, ЕСL энтерохромаффиноподобные клетки, вырабатывающие гистамин. В местах расположения кардиальных желез часто наблюдаются патологические образования, такие как кисты, язвы, опухоли, дивертикулы. Мышечная пластинка слизистой оболочки состоит из продольно направленных пучков гладкомышечных клеток, окруженных сетью эластических волокон. Мышечная пластинка слизистой оболочки утолщается по направлению к желудку и отделяет слизистую оболочку от подслизистой основы. В подслизистой основе по всей длине пищевода находятся собственные железы пищевода. Это сложные разветвленные альвеолярно-трубчатые железы, вырабатывающие слизистый секрет. Мышечная оболочка пищевода состоит из двух слоев, внутреннего циркулярного и наружного продольного. В верхней трети, пищевода эти слои представлены поперечно-полосатой мышечной тканью, в средней трети содержат как поперечнополосатую, так и гладкую мышечную ткань, а в нижней трети только гладкую мышечную ткань. Между слоями мышечной оболочки в соединительнотканных прослойках находятся сосуды и межмышечное нервное сплетение.

Адвентициальная оболочка пищевода образована рыхлой неоформленной соединительной тканью, содержит жировые клетки, сосуды и нервы. В брюшном отделе пищевод покрыт серозной оболочкой, образованной соединительнотканной пластинкой, покрытой снаружи мезотелием. В области перехода пищевода в желудок многослойный плоский неороговевающий эпителий резко переходит в однослойный призматический эпителий желудка. Кольцевой слой мышечной оболочки этой области пищевода утолщен и образует сфинктер.

Средний и задний отделы пищеварительной системы.

Желудок. Желудок выполняет многочисленные функции: химическая обработка желудочным соком нищи, перемешивание и проталкивание переработанной желудочным соком пищи, секреция ферментов желудочного сока и слизи, выработка антианемического фактора, гормонов и экскреция ряда веществ. В стенке желудка, как и во всей пищеварительной трубке, различают четыре оболочки: слизистую оболочку, подслизистую основу, мышечную и серозную оболочки. Для рельефа слизистой оболочки желудка характерно наличие складок, образованных слизистой оболочкой и подслизистой основой, ямочек-углублений эпителия в собственной пластинке слизистой оболочки, желудочных полей участков слизистой оболочки желудка с железами, ограниченных друг от друга бороздками. Слизистая оболочка желудка состоит из трех пластинок: эпителиальной пластинки слизистой оболочки, а также собственной и мышечной пластинки слизистой оболочки желудка. Эпителиаль-ная пластинка представлена однослойным призматическим железистым эпителием. Все поверхностные эпителиоциты выделяют мукоидный секрет. Выделяемая клетками слизь служит защитой как от механического, так и от химического повреждения стенки желудка. Эпителиальные клетки слизистой оболочки желудка также способны всасывать никоторые вещества: алкоголь, воду, лекарственные вещества и т. д.

Собственная пластинка слизистой оболочки представлена рыхлой волокнистой соединительной тканью. В ней всегда имеются лимфоидные элементы, а иногда и отдельные солитарные лимфатические фолликулы. В собственной пластинке слизистой оболочки желудка расположены железы желудка. Различают три вида желудочных желез: собственные железы или фундальные в области тела и дна желудка, пилорические и кардиальные в соответствующих отделах желудка. Все железы желудка простые неразветвленные или разветвленные в меньшей или большей мере. Железы открываются в желудочные ямки. В составе собственных желез желудка различают несколько видов клеток: главные экзокриноциты, париетальные экзокриноциты, слизистые (мукоциты) в области тела желез, шеечные или недифференцированные эпителиоциты и эндокринные (аргирофильные) клетки.

Главные клетки, имеющие базофильную окраску располагаются в области дна и тела желудка. Они секретируют пепсиноген, который в кислой среде превращается в пенсин, а также они продуцируют химозин.

Париетальные экзокриноциты располагаются снаружи от главных и слизистых клеток. Эти крупные клетки имеют оксифильно-окрашенную цитоплазму. Внутри клеток располагаются многочисленные митохондрии и внутриклеточные канальцы, которые переходят в межклеточные канальцы. Париетальные клетки вырабатывают хлориды, из которых образуется соляная кислота. Слизистые клетки (мукоциты) лежат и теле железы. Другая разновидность слизистых клеток шеечные располагаются в шейке железы. Ядра этих клеток уплощены и лежат в базальной части клеток. Кроме секреторной функции шеечным мукоцитам отводят роль недифференцированных эпителиоцитов, являющихся источником регенерации как секреторных энителиоцитов, так и эпителия желудочных ямок. Эндокриноциты желез желудка представлены несколькими видами клеток. ЕС-клетки самые многочисленные и располагаются между главными клетками. Они секретируют серотонин и мелатонин. Серотонин стимулирует секрецию ферментов, выделение слизи, двигательную активность, мелатонин фотопериодичность функциональной активности вместе с гормонами эпифиза. ЕCL-клетки располагаются в теле и дне железы. Они вырабатыиают гистамин, который регулирует секреторную активность париетальных клеток. А-клетки вырабатывают глюкагон, J-клетки продуцируют гастрин, стимулирующий секреторную активность клеток желез желудка. Р-клетки секретируют бомбезин, стимулирующий выделение соляной кислоты и панкреатического сока. Д-клетки продуцируют соматостатин, ингибирующий синтез белка, а клетки Д, выделяют ВИП вазоинтестинальный поли-пептид, снижающий кровяное давление. Под собственной пластинкой слизистой оболочки расположена мышечная пластинка слизистой оболочки желудка, образованная тремя слоями гладких миоцитов: внутренним и наружным циркулярным и средним - продольным. Подслизистая основа желудка состоит из рыхлой неоформленной соединительной ткани, в ней имеется мощное артериальное и венозное сплетение, сеть лимфатических сосудов и подслизистое нервное сплетение. Мышечная оболочка желудка хорошо развита в теле желудка и привратнике. Она представлена тремя слоями: наружным продольным, средним - циркулярным, внутренний слой мышечной оболочки желудка представлен косорасположенными пучками гладких миоцитов. Между слоями гладких миоцитов и соединительнотканных прослойках располагаются кровеносные и лимфатические сосуды, а также ганглии мощ-ного межмышечного сплетения жплудка.

Серозная оболочка состоит из рыхлой соединительной ткани и мезотелия.

Пилорическая часть желудка имеет некоторые особенности строения. Желудочные ямочки в области пилорической части желудка более глубокие, чем в области дна. В собственной пластинке слизистой оболочки расположены пилорические железы, сильно разветвленные по сравнению с собственными железами желудка. Концевые отделы этих желез состоят преимущественно из слизистых клеток, а также имеются эндокринные клетки. Для пилорической части желудка также характерно наличие циркулярного слоя в мышечной оболочке, формирующего пилорический сфинктер. Поступление пищи из желудка и кишечник регулируется этим сфинктером.

В кардиальной части желудка в собственной пластинке слизистой оболочки располагаются простые трубчатые сильно разветвленные кардиальные железы. Их секреторные клетки вырабатывают слизь. Иногда в кардиальных железах встречаются в небольшом количестве главные и париетальные клетки. В составе кардиальных желез имеются эндокринные гастринпродуцирующие клетки.

Следующая за желудком тонкая кишка выполняет дальнейшую химическую обработку нищи (белков, углеводов, липидов), проталкивание химуса, выработку гормонов и главное всасывание продуктов расщепления в кровь и лимфу. В тонкой кишке выделяют три отдела: 12-перстную кишку, тощую и подвздошную. Стенка тонкой кишки состоит из слизистой оболочки, подслизистой основы, мышечной и серозной оболочек. Для слизистой оболочки тонкой кишки характерны циркулярные складки, крипты и ворсинки, увеличивающие поверхность всасывания. В слизистой оболочке тонкой кишки различают три пластинки: эпителиальную (однослойный призматический каемчатый эпителий), собственную пластинку слизистой оболочки (с кровеносными и лимфатическими сосудами и одиночными лимфоидными узелками или их агрегатами) и мышечную пластинку слизистой оболочки с двумя слоями гладких миоцитов (внутренним циркулярным и наружным продольным ).

Строение ворсинки. Ворсинка представляет собой листовидное или пальцевидное выпячивание слизистой оболочки тонкой кишки. Все компоненты слизистой оболочки принимают участие в их образовании. В основе ворсинки пальцевидный вырост собственной пластинки слизистой оболочки тонкой кишки, представленный рыхлой волокнистой соединительной тканью с кровеносными и лимфатическими капиллярами и пучками гладких миоцитов. С поверхности этот соединительнотканный вырост покрыт однослойным призматическим каемчатым эпителием, в котором различают три типа клеток: каемчатые, бокаловидные и эндокринные. Столбчатые или каемчатые эпителиоциты на апикальной поверхности имеют исчерченную каемку из множества микрокворсинок с высоким содержанием ферментов, участвующих в расщеплении и транспортировке всасываемых веществ. В области исчерченной каемки происходит пристеночное пищеварение, в отличие от полостного в просвете пищеварительной трубки и внутриклеточного. Бокаловидные экзокриноциты вырабатывают слизь. Их число нарастает по мере приближения к толстой кишке, где имеется обилие этих клеток.

Строение крипты. Кишечные крипты (железы) имеются и в тонкой и в толстой кишке в отличие от ворсинок, характерных только для тонкой кишки. Крипты представляют собой трубчатые углубления эпителия, расположенные в собственной пластинке слизистой оболочки. Их дно достигает мышечной пластинки слизистой оболочки. В их выстилке имеется пять типов клеток: столбчатые или каемчатые эпителиоциты (в толстой кишке каемка низкая); бокаловидные экзокриноциты; недифференцированные эпителиоциты источник регенерации клеток ворсинок и криптэкзокриноциты с апикальной ацидофильной зернистостью, выделяющие дипептидазы, расщепляющие дипептиды и нейтрализующие соля- ную кислоту в химусе; а также желудочно-кишечные эндокриноциты.

Среди последних различают ЕС-клетки, продуцирующие серотонин и мотилин; А-клетки, секретирующие энтероглюкагон; S-клетки, выделяющие секретин; J-клетки, вырабатывающие холецистокинин и панкреозимин, влияющие на мускулатуру желчного пузыря и функции поджелудочной железы. Выявлены также J-клетки, секретирующие гастрин и Д и Д1 вырабатывающие активные пептиды.

Каждый отдел тонкой кишки имеет свои гистофункциональные особенности. В двенадцатиперстной кишке они выражаются в наличии высоких циркулярных складок, присутствии широких и низких ворсинок, наличии дуоденальных (бруннеровых) желез в подслизистой основе и в мощной мышечной оболочке. Для тощей кишки характерны низкие и редкие циркулярные складки, высокие и тонкие ворсинки, отсутствие желез в подслизистой основе. На всем протяжении тонкой кишки в слизистой оболочке имеются одиночные лимфатические узелки. В подвздошной кишке чаще, чем в других отделах тонкой кишки встречаются сгруппированные лимфоидные узелки.

За слизистой оболочкой в тонкой кишке располагается подслизистая основа с кровеносными и лимфатическими сосудами и подслизистым нервным сплетением. Из слизистой оболочки в подслизистую основу могут проникать лифматические узелки или их агрегаты. Мышечная оболочка тонкой кишки состоит из двух слоев: внутреннего циркулярного и наружного продольного слоя гладких миоцитов. Между слоями мышечной оболочки находится мышечно-кишечное нервное сплетение.

Серозная оболочка представлена рыхлой соединительной тканью и мезотелием. Она покрывает снаружи тонкую кишку со всех сторон, за исключением двенадцатиперстной кишки, которая покрыта брюшиной только спереди.

Толстая кишка. Толстая кишка состоит из двух частей: ободочной кишки (слепая кишка с червеобразным отростком, восходящая, поперечная, нисходящая и сигмовидная кишка) и прямой кишки. В толстой кишке происходит всасывание воды и формирование, продвижение и удаление каловых масс, выделение кальция, магния, фосфатов, солей тяжелых металлов, переваривание клетчатки, выработка витаминов К, В и слизи. Для слизистой оболочки толстой кишки характерно наличие циркулярных полулунных складок, отсутствие ворсинок и наличие крипт, которые значительно более выражены их просвет шире и они чаще расположены, чем в тонкой кишке. Своим дном крипты достигают мышечной пластинки слизистой оболочки, имеющей 2 слоя: циркулярный и продольный слой гладких миоцитов. Основную массу клеток, выстилающих крипту, составляют бокаловидные экзокриноциты, вырабатывающие слизь. Кроме того, в составе эпителия слизистой имеются столбчатые эпителиоциты, недифференцированные эпителиоциты, клетки с ацидофильной зернистостью и эндокриноциты. В собственной пластинке слизистой оболочки встречаются солитарные лимфоидные фолликулы, проникающие и в подслизистую основу, особенно много их в подслизистой основе ободочной кишки. В подслизистой основе расположены сосудистое и нервное подслизистые сплетения. Мышечная оболочка толстой кишки состоит из двух слоев гладких миоцитов: внутреннего циркулярного и наружного продольного. При этом наружный слой не сплошной. Пучки мышечных клеток собраны в три ленты, тянущиеся вдоль своей оболочки кишки. Между слоями мышечной оболочки в соединительнотканных прослойках располагаются сосуды и мышечно-кишечное нервное сплетение.

Червеобразный отросток. Его стенка состоит из тех же оболочек, что и стенка ободочной кишки. Для рельефа слизистой оболочки червеобразного отростка характерно наличие крипт. Слизистая оболочка представлена однослойным каёмчатым призматическим эпителием с небольшим количеством бокаловидных экзокриноцитов, большим содержанием клеток с ацидофильной зер-нистостью и эндокринных клеток, чем в других отделах толстой кишки. В собственной пластинке слизистой оболочки и подслизистой основе имеются многочисленные лимфатические узелки. Поэтому аппендикс называют кишечной миндалиной. Он выполняет защитную функцию. Мышечная пластинка слизистой оболочки отростка практически отсутствует. Мышечная оболочка состоит из двух слоев: внутреннего циркулярного и наружного продольного слоя гладких миоцитов. При этом продольный слой сплошной в отличие от ободочной кишки. Снаружи имеется серозная оболочка, образующая собственную брыжейку отростка.

Печень самая массивная железа организма. Как любая другая железа, она состоит из паренхимы и стромы. Паренхима печени построена из клеток железистого эпителия энтодермального происхождения. Строма имеет мезенхимальное происхождение и состоит из рыхлой волокнистой неоформленной соединительной ткани. В организме печень выполняет несколько десятков функций, большинство из которых связано с ее положением на пути тока крови из пищеварительного тракта в общий кровоток. Она выполняет защитную функцию против микробов и чужеродных веществ, поступающих из кишечника в кровь, обезвреживает многие вредные продукты обмена веществ, инактивирует гормоны, биогенные амины, лекарственные препараты. Печень секретирует желчь, синтезирует белки плазмы крови, образует и накапливает гликоген, участвует в обмене холестерина и витаминов и т. д.

Паренхима печени с помощью более (печень свиньи) или менее (печень человека) выраженных соединительно-тканных прослоек разделена на участки неправильной, часто гексагональной формы, называемые печеночными дольками. Печеночная долька является структурно-функциональной единицей органа. Необходимо отметить, что представление о структурно-функциональной единице печени млекопитающих возникло давно, но оно не было однозначным на протяжении истории изучения этого органа. Более того, оно подвергается трансформации и в настоящее время. Сейчас, наряду с классической печеночной долькой, выделяют еще портальную дольку и ацинус. Это связано с тем, что условно выделяют различные центры в одних и тех же реально существующих структурах.

Кровоснабжение печени. Чтобы понять морфологию структурно функциональной единицы печени, необходимо изучить кровоснабжение органа, так как гепатоциты печени топографически тесно связаны с кровеносными сосудами. В ворота печени входят воротная вена и печеночная артерия. В печени они многократно разделяются на все более мелкие сосуды: долевые, сегментарные, междольковые, вокругдольковые артерии и вены. На всем протяжении эти сосуды сопровождают желчные протоки, и они располагаются в соединительнотканных прослойках. Междольковая артерия и междольковая вена с междольковым желчным протоком вместе составляют так называемую триаду печени. Рядом располагаются лимфатические сосуды. От вокругдольковых вен и артерий отходят капилляры, которые направляются в печеночные дольки и на их периферии сливаются, образуя внутридольковые синусоидные сосуды (капилляры). В них течет смешанная кровь в направлении от периферии к центру дольки и собирается в центральную вену. Центральной веной начинается отток крови от дольки. Далее кровь поступает в поддольковые вены, которые формируют 34 главные печеночные вены, выходящие из органа.

Печеночная долька. В настоящее время под классической печеночной долькой подразумевают участок паренхимы, отграниченный более или менее выраженными прослойками соединительной ткани. Центром дольки является центральная вена. В дольке располагаются эпителиальные печеночные клетки гепатоциты. Гепатоцит клетка многоугольной формы, может содержать одно, два и более ядер. Наряду с обычными (диплоидными) ядрами, имеются и более крупные полиплоидные ядра. В цитоплазме присутствуют все органеллы общего значения, содержатся различного рода включения: гликоген, липиды, пигменты. Гепатоциты в дольке печени неоднородны и отличаются друг от друга по строению и функции в зависимости от того, в какой зоне дольки печени они расположены: центральной, периферической или промежуточной. Структурным и функциональным показателям в дольке печени свойственен суточный ритм. Гепатоциты, составляющие дольку, образуют печеночные балки или трабекулы, которые, анастомозируя друг с другом, располагаются по радиусу и сходятся к центральной вене. Между балками, состоящими самое меньшее из двух рядов печеночных клеток, проходят синусоидные кровеносные капилляры. Стенка синусоидного капилляра выстлана эндотелиоцитами, лишенными (на большем своем протяжении) базальной мембраны и содержащими поры. Между клетками эндотелия рассеяны многочисленные звездчатые макрофаги (клетки Купфера). Третий вид клеток перисинусоидальные липоциты, имеющие небольшой размер, мелкие капли жира и треугольную форму, располагаются ближе к перисинусоидальному пространству. Перисинусоидальное пространство или вокругсинусоидальное пространство Диссе представляет собой узкую щель между стенкой капилляра и гепатоцитом. Васкулярный полюс гепатоцита имеет короткие цитоплазматические выросты, свободно лежащие в пространстве Диссе. Внутри трабекул (балок), между рядами печеночных клеток, располагаются желчные капилляры, которые не имеют собственной стенки и представляют собой желоб, образованный стенками соседних печеночных клеток. Мембраны соседних гепатоцитов прилегают друг к другу и образуют в этом месте замыкательные пластинки. Желчные капилляры характеризуются извитым ходом и образуют короткие боковые мешкообразные ответвления. В их просвете видны многочисленные короткие микроворсинки, отходящие от биллиарного полюса гепатоцитов. Желчные капилляры переходят в короткие трубочки холангиолы, которые впадают в междольковые желчные протоки. На периферии долек в междольковой соединительной ткани располагаются триады печени: междольковые артерии мышечного типа, междольковые вены безмышечного типа и междольковые желчные протоки с однослойным кубическим эпителием.

Портальная печеночная долька. Образуется сегментами трех соседних классических печеночных долек, окружающих триаду. Она имеет треугольную форму, в ее центре лежит триада, а на периферии (по углам) центральные вены.

Печеночный ацинус образован сегментами двух расположенных рядом классических долек и имеет форму ромба. У острых углов ромба проходят центральные вены, а триада располагается на уровне середины. У ацинуса, как и у портальной дольки, нет морфологически очерченной границы, подобной соединительнотканным прослойкам, отграничивающим классические печеночные дольки.

Желчный пузырь. Образованная в печени желчь поступает через систему выводных протоков в желчный пузырь. Он имеет стенку, состоящую из трех оболочек: слизистой, мышечной и адвентициальной. Слизистая оболочка образует многочисленные складки, выстланные однослойным каемчатым призматическим эпителием, способным всасывать воду и другие вещества из желчи. Мышечная оболочка характеризуется преимущественно циркулярным направлением гладких миоцитов, а наружная адвентициальная состоит из плотной соединительной ткани. Со стороны брюшной полости желчный пузырь покрыт серозной оболочкой с мезотелием.

Поджелудочная железа это железа пищеварительной системы, имеющая дольчатое строение и обладающая одновременно эндокринной и экзокринной функциями. Паренхима железы развивается из энтодермы, а соединительнотканные элементы стромы из мезенхимы. Экзокринная часть железы секретирует панкреатический сок, богатый ферментами, участвующими в процессах пищеварения в 12-перстной кишке. В эндокринной части синтезируются гормоны инсулин, глюкагон, соматостатин, ВИП, панкреатический полипептид. Экзокринная часть имеет строение сложной альвеолярно-трубчатой железы, содержащей секреторные отделы (ацинусы) и выводные протоки. Панкреатический ацинус является структурно-функциональной единицей этой части железы. Состоит из эпителиальных клеток экзокринных панкреоцитов или ациноцитов, имеющих форму усеченного конуса, обращенных расширенным основанием на периферию, а вершиной в центр ацинуса. В ациноцитах различают гомогенную базофильную зону, в которой локализована гранулярная эндоплазматическая сеть (расширенное основание или базальный полюс клетки) и апикальную зимогенную зону, содержащую ацидофильные гранулы проферментов. Центроационозные клетки, наблюдаемые иногда в центре ацинуса, представляют собой клетки вставочного отдела. Этот отдел дает начало системе выводных протоков желез. Вырабатываемые в ацинусе компоненты панкреатического сока, через вставочный отдел, стенка которого образована одним слоем уплощенных эпителиальных клеток, поступают в межацинозные протоки, образованные однослойным кубическим эпителием. Далее располагаются междольковые протоки, которые впадают в общий проток поджелудочной железы. Эти протоки выстланы слизистой оболочкой с однослойным призматическим эпителием.

Эндокринная часть железы представлена островками, лежащими в дольках железы между панкреатическими ацинусами. Островки состоят из эндокринных клеток инсулоцитов. Между ними располагаются кровеносные капилляры фенестрированного типа, окруженные перикапиллярным пространством. В цитоплазме инсулоцитов, наряду с органеллами общего значения, располагаются секреторные гранулы. Эти гранулы по своим размерам, физико-химическим и морфологическим свойствам неодинаковы. На этом основании среди инсулярных клеток различают 5 видов: В-клетки (базофильные), вырабатывающие гормон инсулин; А-клетки (ацидофильные), вырабатывающие глюкагон; Д-клетки (дендритические), вырабатывающие соматостатин; Д1-клетки (аргирофильные), вырабатывающие вазоактивный интестинальный полипептид; РР-клетки, вырабатывающие панкреатический полипептид. Все эти гормоны секретируются клетками непосредственно в кровь.


Эндокринная система

Классификация органов эндокринной системы

1. Центральные регуляторные образования эндокринной системы (нейросекреторные ядра гипоталамуса, гипофиз, эпифиз).

2. Периферические эндокринные железы: гипофиззависимые (тироциты щитовидной железы, кора надпочечников) и гипофиз-независимые (паращитовидная железа, кальцитониноциты щитовидной железы, мозговое вещество надпочечников).

3. Органы с эндокринными и неэндокринными функциями (поджелудочная железа, половые железы, плацента).

4. Одиночные гормонопродуцирующие клетки (в легких, почках, пищеварительной трубке и др.) нервного генеза и не нервного.

Органы эндокринной системы

ГИПОФИЗ состоит из аденогипофиза эпителиального генеза (передняя доля, средняя доля и туберальная часть и нейрогипофиза нейроглиального происхождения (задняя доля, воронка, стебель). Передняя доля гипофиза представлена эпителиальными эндокриноцитами, расположенными группами и тяжами, между которыми в рыхлой соединительной ткани располагаются кровеносные капилляры синусоидного типа. Эндокриноциты делятся на дни большие группы: хромофильные с хорошо окрашивающимися гранулами и хромофобные со слабо окрашивающейся цитоплазмой и не имеющие гранул. Среди хромофильных клеток различают базофильные с гранулами содержащими гликопротеиды и окрашивающимися основными красителями, и ацидофильные с крупными белковыми гранулами, окрашивающимися кислыми красителями. Базофильные эндокриноциты (их 410%) включают несколько видов (в зависимости от вырабатываемого гормона, см. таблицу 1 клеток: тиротропоциты клетки полигональной формы, в их цитоплазме содержатся мелкие гранулы (80150 нм), гонадотропоциты овальной или круглой формы имеют гранулы (200300 нм) и эксцентрически расположенное ядро, в центре клетки светлая зона “дворик” или макула (на электронограмме это аппарат Гольджи). Кортикотропоциты клетки неправильной формы, содержат особые сферические гранулы (200-250 нм). Ацидофильные эндокриноциты (3035%) имеют хорошо развитую гранулярную эндоплазматическую сеть и подразделяются на:

соматотропоциты с гранулами диаметром 350400 нм и лактотропоциты с более крупными гранулами 500600 нм в цитоплазме. Хромофобные или главные клетки (60%) являются либо малодифференцированными резервными, либо клетками в разных функциональных состояниях. Гипоталамическая регуляция аденогипофизарного гормонообразования осуществляется гуморальным путем. Верхняя гипофизарная артерия в области медиального возвышения гипоталамуса распадается на первичную капиллярную сеть. На стенках этих капилляров заканчиваются аксоны нейронов среднего гипоталамуса. По аксонам этих нейронов их нейрогормоны либерины и статины поступают в кровь. Капилляры первичного сплетения собираются в портальные сосуды. Последние спускаются в переднюю долю и там распадаются на вторичную капиллярную сеть, из которой либерины и статины диффундируют к эндокриноцитам аденогипофиза.

Средняя доля гипофиза у человека слабо развита. Эта доля вырабатывает меланоцитотропин и липотропин, влияющий на липидный обмен. Состоит эта доля из эпителиальных клеток и псевдофолликулов полостей с секретом белкового или слизистого характера.

Нейрогипофиз задняя доля представлена нейроглиальными клетками отростчатой формы питуицитами. Эта часть гипофиза сама не продуцирует, а лишь накапливает гормоны (АДГ, окситоцин) нейронов ядер переднего гипоталамуса и нейросекреторных накопительных тельцах Херринга. Последние являются окончаниями аксонов клеток этих нейронов на стенках синусоидных капилляров задней доли гипофиза. Нейрогипофиз относится к нейрогемальным органам, аккумулирующим гипоталамические гормоны. Задняя доля гипофиза связана с гипоталамусом гипофизарной ножкой и составляет с ним единую гипоталамо-гипофизарную систему.


ЩИТОВИДНАЯ ЖЕЛЕЗА

Состоит из двух долей, соединенных между собой частью железы, называемой перешейком. Снаружи железа покрыта соединительнотканной капсулой, от которой отходят тонкие прослойки с сосудами, разделяющие орган на дольки. Основную часть паренхимы дольки составляют ее структурно-функциональные единицы фолликулы. Это пузырьки, стенка которых состоит из фолликулярных эндокриноцитов тироцитов. Тироциты эпителиальные клетки кубической формы (при нормофункции), секретирующие йодосодержащие гормоны тироксин и трийодтиронин, влияющие на основной обмен. Фолликулы заполнены коллоидом (вязкая жидкость, содержащая тироглобулииы). Снаружи стенка фолликула тесно связана с сетью кровеносных и лимфатических капилляров. При гипофункции щитовидной железы тироциты уплощаются, коллоид уплотняется, размер фолликулов увеличивается, и, наоборот, при гиперфункции тироциты принимают призматическую форму, коллоид становится более жидким и содержит многочисленные вакуоли. В секреторном цикле фолликулом различают фазу продукции и фазу выведения гормона. Для продукции тироксина необходимы йодиды, аминокислоты, в том числе тирозин, углеводные компоненты, вода, поглощаемые тироцитами из крови. В эндоплазматической сети тироцитов образуется полипептидная цепочка тироглобулина, к которой в комплексе Гольджи присоединяются углеводные компоненты. Йодиды крови с помощью пероксидаз тироцитов окисляются в атомарный йод. На границе тироцитов и полости фолликула происходит включение атомов йода в тирозины полипептидной цепочки тироглобулина. В результате образуются моно- и дийодтирозины, а далее из них тетрайодтиронин тироксин и трийодтиронин. Фаза выведения протекает с реабсорбцией коллоида путем фагоцитоза фрагментов коллоида тироглобулина псевдоподиями тироцитов при сильной активации железы. Затем фагоцитированные фрагменты под воздействием лизосомных ферментов подвергаются протеолизу и высвободившиеся из тироглобулина йодтиронины покупают из тироцита в кровеносные капилляры, окружающие фолликул. Умеренная активность щитовидной железы не сопровождается фагоцитозом коллоида. В этом случае наблюдается протеолиз в полости фолликула и пиноцитоз продуктов протеолиза тироцитом. В соединительнотканной строме между фолликулами имеются небольшие скопления эпителиальных клеток (интерфолликулярные островки), являющиеся источником развития новых фолликулов. В составе стенки фолликулов или в интерфолликулярных островках располагаются светлые клетки нейрального происхождения парафолликулярные эндокриноциты или кальцитониноциты (К-клетки). Эти эндокриноциты имеют в цитоплазме помимо гранул нейраминов (серотонин, норадреналин) специфическую зернистость, связанную с выработкой белковых гормонов кальцитонина, понижающего уровень Са в крови, и соматостатина. Продукция этих гормонов, в отличие от продукции тироксина, не связана с поглощением йода и не зависит от тиротропного гормона гипофиза. Гранулы К-клеток хорошо окрашиваются осмием и серебром.


НАДПОЧЕЧНИКИ

Парные органы состоят из наружного коркового вещества и внутреннего мозгового вещества. В корковом веществе различают три зоны эпителиальных клеток: клубочковую, вырабатывающую минералокортикоидный гормон-альдостерон, влияющий на водно-солевой обмен, на удержание натрия в организме; пучковую, продуцирующую глюкокортикоиды, влияющие, на обмен углеводов, белков, липидов, угнетающие воспалительные процессы и иммунитет; сетчатую зону вырабатывающую половые гормоны-андрогены, эстрогены, прогестерон. Клубочковая зона, располагающаяся под капсулой, образована тяжами уплощенных эндокриноцитов, образующих скопления клубочки. В цитоплазме этих клеток мало липидных включений. Разрушение этой зоны приводит к смерти. Продукция гормонов этой зоны практически не зависит от гормонов гипофиза. Под клубочковой зоной имеется суданофобный слой, не содержащий липидов. Пучковая зона самая широкая и состоит из тяжей кубических клеток, содержащих много липидных включений, при растворении которых цитоплазма становится “губчатой”. Сами клетки при этом называются спонгиоцитами. В пучковой зоне различают два вида клеток: светлые и тёмные, являющиеся разными функциональными состояниями одних и тех же эндокриноцитов. Сетчатая зона представлена разветвлеными тяжами мелких секреторных клеток, формирующими сеть, в петлях которой обилие синусоидных капилляров. Пучковая и сетчатая зоны коры надпочечников являются гипофиззависимыми зонами. Для коркового вещества надпочечников, вырабатывающего стероидные гормоны, характерно хорошее развитие агранулярной эндоплазматической сети и митохондрий с извитыми, ветвящимися кристами. Мозговое вещество надпочечников является производным нервных клеток. Его клетки-хромаффиноциты или мозговые эндокриноциты делятся на светлые эпинефроциты, вырабатывающие адреналин, и темные норэпинефроциты, продуцирующие норадреналин. Эти клетки восстанавливают окислы хрома, серебра, осмия. Отсюда их названия хромаффинные, осмиофильные, аргирофильные. Хромафиноциты выделяют адреналин и норадреналин в окружающие их многочисленные кровеносные сосуды, среди которых особенно много венозных синусоидов. Деятельность мозгового вещества не зависит от гормонов гипофиза и регулируется нервными импульсами. В выходе организма из стрессовых состояний кора и мозговое вещество надпочечников с их гормонами участвуют совместно.

Общая характеристика дыхательной системы

Дыхательную систему органов в связи с выполнением основных функций подразделяют на два отдела: воздухоносные пути (носовая полость, носоглотка, гортань, трахея, бронхи вне и легочные), выполняющие функции проведения, очищения, согревания воздуха, звукообразования; и респираторные отделы ацинусы системы легочных пузырьков, расположенные в легких и обеспечивающие газообмен между воздухом и кровью.

Источники развития. Зачатки гортани, трахеи и бронхов возникают как выпячивания вентральной стенки передней кишки, образующиеся на 34 неделе эмбрионального развития. Из мезенхимы дифференцируется гладкая мышечная ткань бронхов, а также хрящевая, волокнистая соединительная ткань, сеть кровеносных сосудов. Из висцерального и париетального листков спланхнотома образуются висцеральный и париетальный листки плевры.

Воздухоносные пути представляют собой систему взаимосвязанных трубок, проводящих воздух. Они выстланы слизистой оболочкой дыхательного типа с многорядным мерцательным эпителием. Исключение составляет преддверие носовой полости, голосовые связки и надгортанник, где эпителий многослойный плоский. Стенка большинства органов воздухоносных путей дыхательной системы имеет слоистое строение и состоит из 4-х оболочек: слизистой оболочки, подслизистой основы с железами, фиброзно-хрящевой с включением гиалиновой или эластической хрящевой ткани и адвентициальной оболочки. Степень выраженности оболочек в разных органах различна в зависимости от места расположения и функциональных особенностей органа. Так, в малых и конечных бронхах отсутствует подслизистая основа и фиброзно-хрящевая оболочка.

Слизистая оболочка обычно включает в свой состав три пластинки, имеющие свои органные особенности: 1. эпителиальную, представленную многорядным призматическим реснитчатым эпителием, характерным для слизистой оболочки дыхательного типа; 2. собственную пластинку слизистой оболочки, в рыхлой соединительной ткани которой много эластических волокон; 3. Мышечную пластинку слизистой оболочки (отсутствует в носовой полости, гортани, трахее), представленную гладкими миоцитами.

Трахея полая трубка, состоящая из всех 4-х оболочек: внутренней слизистой оболочки с двумя пластинками; подслизистой основы со сложными белково-слизистыми железами, секрет которых увлажняет поверхность слизистой оболочки; фиброзно-хрящевой и наружной адвентициальной оболочки. В мерцательном многорядном эпителии слизистой оболочки имеются реснитчатые, бокаловидные клетки, вырабатывающие слизь, базальные камбиальные клетки и эндокринные, вырабатывающие норадреналин, серотонин, дофамин, регулирующие сокращение гладких миоцитов воздухоносных путей. Сбои в их деятельности могут привести к серьезным нарушениям в работе органов дыхания. Волокнисто-хрящевая оболочка трахеи состоит из 1620 гиалиновых колец, не замкнутых на задней стенке органа. Концы незамкнутых колец соединены пучками гладких мышц, что делает стенку трахеи податливой и что имеет большое значение при глотании, проталкивании пищевого комка по пищеводу.

Легкое состоит из системы воздухоносных путей бронхов, составляющих бронхиальное дерево, и из респираторных отделов ацинусов системы легочных пузырьков, образующих альвеолярное дерево.

Бронхи по расположению подразделяются на внелегочные: главные, долевые, зональные и легочные, начиная с сегментарных и субсегментарных, и кончая терминальными бронхиолами. По калибру различают крупные, средние, мелкие бронхи и терминальные бронхиолы. Все бронхи имеют общий план строения. В их стенке различают 4 оболочки: внутреннюю слизистую оболочку, подслизистую основу, фиброзно-хрящевую и наружную адвентициальные оболочки. Степень выраженности оболочек и их составляющих структур зависит от диаметра бронха. Так, если в главных, крупных и средних бронхах все четыре оболочки, то в малых только две: слизистая и адвентициальная оболочки. В слизистой оболочке бронхов имеется три пластинки: эпителиальная, собственная пластинка слизистой оболочки и мышечная пластинка слизистой оболочки. Эпителиальная пластинка слизистой оболочки, обращенная в просвет бронха, представлена многорядным реснитчатым призматическим эпителием. По мере уменьшения калибра бронхов уменьшается многорядность эпителия. Клетки становятся более низкими до низких кубических в малых бронхах, уменьшается количество бокаловидных клеток. Кроме реснитчатых, бокаловидных, эндокринных и базальных клеток, в дистальных отделах бронхиального дерева обнаружены секреторные клетки, расщепляющие сурфактант, каемчатые клетки хеморецепторы и безреснитчатые, встречающиеся в бронхиолах. За эпителиальной пластинкой следует собственная пластинка слизистой оболочки, представленная рыхлой соединительной тканью с эластическими волокнами. С уменьшением калибра бронхов в ней нарастает количество эластических волокон. Замыкает слизистую оболочку бронхов ее третья пластинка мышечная пластинка слизистой оболочки. Она появляется в главном и достигает максимума в малом бронхе. При бронхиальной астме сокращение мышечных элементов в малых и мельчайших бронхах резко уменьшает их просвет. В подслизистой основе бронхов группами располагаются концевые отделы смешанных белково-слизистых желез. Их секрет обладает бактериостатическим и бактерицидным свойством; секрет обволакивает пылевые частицы, увлажняет слизистую оболочку. В малых бронхах отсутствуют железы, отсутствует подслизистая основа. Фиброзно-хрящевая оболочка тоже претерпевает изменения по мере уменьшения калибра бронхов, незамкнутые хрящевые кольца в главных бронхах сменяются хрящевыми пластинками в долевых крупных бронхах. В мелких бронхах не имеется хрящевой ткани, отсутствует фиброзно-хрящевая оболочка. Наружная адвентициальная оболочка бронхов состоит из волокнистой соединительной ткани с сосудами и нервами, она переходит в соединительнотканные перегородки паренхимы легкого.

Терминальные, конечные бронхиолы (Д 0,5 мм) выстланы однослойным кубическим реснитчатым эпителием. В собственной пластинке слизистой оболочки имеются продольно идущие эластические волокна, между ними залегают отдельные пучки гладких миоцитов. Терминальными бронхиолами заканчиваются воздухоносные пути.

Респираторное дерево. Респираторный отдел. Его структурно-функциональной единицей является ацинус. Ацинус система легочных пузырьков, которые обеспечивают газообмен. Ацинусы крепятся на терминальных бронхиолах. Состав ацинуса: респираторные бронхиолы 1, 2, 3 порядка, альвеолярные ходы и альвеолярные мешочки. Во всех этих образованиях имеются альвеолы, а значит, возможен газообмен. В респираторных бронхиолах участки однослойного кубического немерцательного эпителия чередуются с альвеолами, выстланными однослойным плоским эпителием. В альвеолярных ходах уже много альвеол, в межальвеолярных перегородках видны булавовидные утолщения (мышечные кисточки), содержащие гладкие миоциты. Альвеолярные мешочки образованы множеством альвеол, мышечные элементы в них отсутствуют. В межальвеолярных перегородках, кроме кровеносных капилляров, прилежащих снаружи к базальной мембране эпителия альвеол, имеется сеть эластических волокон, оплетающая альвеолы. Альвеолы тесно прилегают друг к другу, поэтому один капилляр своими сторонами граничит сразу с двумя альвеолами, что обеспечивает максимальные условия для газообмена. Альвеола имеет вид пузырька, выстланного изнутри однослойным плоским эпителием с двумя видами клеток: респираторными и большими гранулярными эпителиоцитами. Респираторные эпителиоциты клетки 1 типа с мелкими митохондриями и пиноцитозными пузырьками. Через эти клетки происходит газообмен. К безъядерным участкам эпителиоцитов 1 типа прилежат безъядерные участки эндотелия кровеносного капилляра. Разделяющие респираторные эпителиоциты и эндотелиоциты капилляра их базальные мембраны плотно прилежат друг к другу. Перечисленные структуры (респираторные альвеолоциты, базальные мембраны и эндотелий капилляра) составляют аэрогематический барьер между воздухом альвеол и кровью кровеносных капилляров. Он очень тонкий 0,5 мкм. В состав барьера также входит сурфактантный альвеолярный комплекс, изнутри выстилающий альвеолы и составляющий 2 фазы: мембранную, сходную с биологической мембраной, с белками и фосфолипидами, и жидкую гипофазу, расположенную глубже и содержащую гликопротеиды. Сурфактант предотвращает спадание альвеол при выдохе, предохраняет от проникновения микробов из воздуха и от трансудации жидкости из капилляров в альвеолы. Вырабатывают сурфактант большие гранулярные эпителиоциты клетки 2 типа. В них имеются крупные митохондрии, комплекс Гольджи, эндоплазматическая сеть и гранулы сурфактанта. В стенке альвеол встречаются также макрофаги; в них много лизосом и липидов, за счет окисления которых выделяется тепло на обогревание воздуха альвеол.

Общая характеристика кожи и ее производных

Кожа образует внешний покров организма. К производным кожи относят волосы, ногти, потовые и сальные железы, молочные железы. Последние тесно связаны с половой сферой, поэтому изучаются в соответствующем разделе.

Кожа состоит из многослойного плоского ороговевающего эпителия эпидермиса, соединительнотканной части дермы с сосочковым и сетчатым слоями и гиподермы подкожной жировой основы. Эпидермис происходит из эктодермы, а соединительнотканная часть кожи из дерматомов (производных сомитов). Функции кожи разнообразны. Она защищает организм от повреждений, микроорганизмов, участвует в обмене веществ, в водно-солевом обмене, через нее выделяется вода, соли, молочная кислота и продукты азотистого обмена (эти процессы усиливаются при ряде заболеваний), в тепловом обмене, в синтезе витамина Д. Кожа является депо крови (до 1 л крови может депонироваться в коже) и огромным рецепторным полем, благодаря обилию в ней нервных окончаний.

Эпидермис многослойный плоский ороговевающий эпителий. В зависимости от толщины эпидермиса, количества его слоев, различают “толстую” кожу (ладони, подошвы ног) и остальную “тонкую”. В эпидермисе “толстой” кожи (кожа пальца) различают 5 слоев эпителиоцитов или эпидермоцитов: базальный, шиповатый, зернистый, блестящий и роговой. Эпидермис это в основном дифферон эпителиоцитов (эпидермоцитов) (или кератиноцитов). Базальный слой представлен цилиндрическими эпителиоцитами, расположенными на базальной мембране. Среди них имеются стволовые клетки, являющиеся родоначальниками дифферона клеток эпидермиса. За счет деления эпителиоцитов базального слоя обновляется эпидермис. Поэтому базальный слой называют ростковым слоем эпидермиса. Кроме того, в базальном слое имеются мела-ноциты пигментные отростчатые клетки, не относящиеся к дифферону эпителиоцитов. В меланоцитах нет тонофибрилл, десмосом, характерных для эпителиоцитов базального и шиповатого слоев, но содержатся зерна пигмента меланина, накапливающиеся в особых тельцах меланосомах. Меланоциты имеют неврогенное происхождение. Образуется меланин в них при окислении аминокислоты тирозина под влиянием ферментов тирозиназы и ДОФА оксидазы. Поэтому меланоциты дают положительную реакцию на ДОФА оксидазу, что используется в диагностике меланом.

Эпителиоциты, внутриэпидермальные макрофаги, дермальные меланоциты не дают положительной ДОФА-реакции, они захватывают готовый меланин при выделении его из меланоцитов. К внутриэпидермальным макрофагам относят клетки Лангерганса отростчатые клетки с аргирофильными гранулами и виде теннисных ракеток. Меланосом эти клетки не имеют. Располагаются отростчатые клетки Лангерганса в базальном и шиповатом слоях. Шиповатый слой представлен несколькими слоями тесно расположенных эпителиоцитов полигональной формы с округлыми ядрами и большим количеством тонофибрилл признаком начала ороговения. Зернистый слой состоит из 23 рядов уплощенных эпителиальных клеток, содержащих зерна кератогиалина с пучками фрагментированных тонофибрилл и ламелярными тельцами разновидностью лизосом (кератосом). Последние содержат гидролитические ферменты, помогающие слущиванию роговых чешуек в верхних слоях эпидермиса, а также имеют липиды, предохраняющие кожу от диффузии в нее воды. В этом слое клеток начинается процесс обратного развития их ядер и органелл. В следующем блестящем слое (23 слоя плоских клеток) уже выражены деструктивные процессы ядер и органелл клеток. Этот слой эпителиоцитов пропитан элеидином, образованным из белков тонофибрилл и кератогиалина. Блестящий слой отсутствует в эпидермисе “тонкой” кожи. Самый поверхностный слой эпидермиса состоит из ороговевших эпителиальных клеток, завершивших свой цикл. Это роговые чешуйки, содержащие мягкий кератин и пузырьки воздуха. В процессе их слущивания играют большую роль кератосомы. Они выходят в межклеточное веществ, их ферменты лизируют десмосомы, и роговые чешуйки отпадают. Ороговение в эпидермисе кожи относят к мягкому. Оно проходит через промежуточные стадии кератогиалина и элеидина в отличие от твердого ороговения (без промежуточных стадий) в волосах и ногтях. В гистогенетическом ряду эпидермоцитов клетки проходят полный жизненный цикл с появлением из стволовых клеток базального слоя, процессов деления, роста, дифференцировки, постепенной кератинизации, передвижения в вышележащие слои, деструкции органелл и ядер, процессов превращения в роговые чешуйки и их удаления с поверхности кожи. На смену закончившим свой жизненный цикл клеткам приходят новые, следующие поколения клеток. И так происходит постоянное обновление клеточного состава эпидермиса.

Дерма, собственно кожа, подразделяется на сосочковый и сетчатый слои. Сосочковый слой расположен сразу под эпидермисом и представлен рыхлой волокнистой неоформленной соединительной тканью с большим количеством кровеносных капилляров и рецепторов, в том числе осязательных телец Мейснера. Граница эпидермиса и сосочкового слоя дермы неровная. На коже пальца имеются высокие соединительнотканные сосочки, вдающиеся в эпидермис. Это обстоятельство определяет рельеф кожного рисунка, неповторимого у каждого человека. Сосочковый слой выполняет в основном трофическую функцию. Сетчатый слой состоит из плотной волокнистой неоформленной соединительной ткани и обеспечивает прочность кожи. В этом слое расположены кровеносные сосуды, нервные стволики, потовые железы, нервные окончания, и том числи инкапсулированные пластинчатые тельца Фатер-Пачини, а в коже с волосами также находятся корни волос с сальными железами и гладкими миоцитами. Глубже следует подкожная основа гиподерма. Она амортизирует действие механических факторов на кожу, участвует в теплорегуляции кожи. В этой части кожи имеются скопления жировых клеток, разделенных пучками коллагеновых волокон.

Волосы это ороговевшие эпителиальные нитевидные придатки кожи. Источником их развития является эпидермис, врастающий в дерму в виде тяжей на 3 месяце эмбриогенеза. Перед рождением или сразу после рождения первые эмбриональные волосы выпадают и заменяются пушковыми. Затем происходит замена волос на более грубые, окончательные, среди которых различают три типа волос: длинные (голова, борода, усы), щетинистые (брови, ресницы), и пушковые (на остальной части тела). Окончательные волосы подвергаются периодической смене. В волосах различают стержень, находящийся на поверхности кожи, и корень, заканчивающийся расширением волосяной луковицей, расположенной в толще кожи. Волосы состоят из мозгового, коркового вещества и кутикулы. Мозговое вещество, расположенное в центре, состоит из частично ороговевших клеток с вытянутыми уплотненными ядрами, с мягким кератином (зерна трихогиалина), пузырьками газа и пигментом. Мозговое вещество отсутствует в пушковых волосах и стержне длинных и щетинистых волос. Корковое вещество, прилегающее снаружи к мозговому, представлено плоскими роговыми чешуйками с твердым кератином, пузырьками газа и пигментом. Кутикула волоса расположена снаружи от коркового вещества и представлена одним слоем черепицеобразно расположенных чешуек, содержащих твердый кератин и не имеющих пигмента. Матрицей для роста волос служит волосяная луковица, содержащая мелкие живые эпителиальные клетки, способные к размножению. В волосяную луковицу вдается соединительнотканный волосяной сосочек с сосудами и нервами, обеспечивающими нервно-трофическое влияние на волосяную луковицу. Корень волоса окружается внутренним и наружным эпителиальными влагалищами и волосяной сумкой. Внутреннее эпителиальное корневое влагалище, содержащее мягкий кератин, является производным волосяной луковицы и состоит из 3 слоев: кутикулы, прилежащей к кутикуле корня волоса, внутреннего гранулосодержащего слоя и наружного (бледного) эпителиального слоя. Наружное эпителиальное корневое влагалище образовано богатыми гликогеном клетками базального и шиповатого слоем эпидермиса. Волосяная сумка или корневое дермальное влагалище волоса состоит из базальной мембраны, к которой снаружи последовательно прилегает внутренний циркулярный слой соединительнотканных волокон и наружный продольный слой волокон. В волосяную сумку вплетается мышца, поднимающая волос, состоящая из гладких миоцитов и идущая в косом направлении к сальной железе.

Сальные железы это простые альвеолярные, связанные с корнями волос, разветвленные железы, секретирующие по голокринному типу. Секрет сальных желез (кожное сало) является жировой смазкой для волос и эпидермиса. Железы состоят из выводных протоков и концевых секреторных отделов. Концевые отделы образованы эпителиальными экзокринными клетками себоцитами. Различают три слоя этих клеток: наружный ростковый с темными ядрами; промежуточный с дифференцирующимися полигональными клетками с четкими клеточными границами и ядрами, с накапливающимися в цитоплазме жировыми каплями; и центральный слой погибающих, дегенерирующих клеток со сморщенными ядрами и гомогенезирующейся цитоплазмой. Выводной проток железы состоит из многослойного эпителия и открывается в волосяную воронку углубление эпидермиса в месте перехода стержня волоса в его корень.

Потовые железы встречаются практически во всех участках кожи. Это простые трубчатые неразветвленные железы. Концевые отделы располагаются в сетчатом слое, а выводные протоки, выстланные двуслойным эпителием, проходят через оба слоя дермы и эпидермис и открываются на поверхности кожи потовыми порами штопорообразными щелями между эпителиоцитами. В концевом отделе, закрученном в виде клубочка, имеются секреторные клетки кубической или цилиндрической формы экзокриноциты-судорифероциты. Они бывают светлые, выделяющие воду и ионы металлов, содержащие много гликогена и имеющие глубокие складки плазмолеммы у базальной поверхности, и темные, содержащие много рибосом и секреторных гранул. Эти клетки секретируют белково-полисахаридные вещества. Кроме секреторных клеток на базальной мембране концевых отделов располагаются миоэпителиоциты, способствующие своими сокращениями выделению секрета. По типу секреции потовые железы бывают мерокриновые более многочисленные и распространенные по всему телу, а также апокриновые (в подмышечных впадинах, вокруг ануса, на больших половых губах). Секрет последних богаче белковыми веществами, они крупнее, их секреторные клетки имеют оксифильную окраску (в отличие от слабо базофильной в мерокриновых) и более низкую активность щелочной фосфатазы по сравнению с мерокриновыми железами. Функционирование апокриновых потовых желез тесно связано с функцией половых желез.

Ноготь является производным эпидермиса. Располагается ноготь на ногтевом ложе, состоящем из эпителия и подлежащей соединительной ткани. Ногтевое ложе с боков и у основания ограничено кожными складками ногтевыми валиками (задним и двумя боковыми). Ростковый слой эпидермиса кожи валиков переходит в эпителий ногтевого ложа и называется гипонихиум или подногтевая пластинка. Роговой же слой частично надвигается на ноготь, на его основание и образует эпонихиум или надногтевую пластинку. Между ногтевым ложем и ногтевыми валиками имеются ногтевые щели (задняя и две боковые). Ногтевая (роговая) пластинка своими краями вдается в эти щели. Ногтевая пластинка, состоящая из плотно прилегающих друг к другу роговых пластинок, содержащих твердый кератин, подразделяется на корень, тело и край, выступающий за пределы ногтевого ложа. Корень ногтя это небольшая часть ногтевой пластинки, лежащая в задней ногтевой щели и частично выступающая в виде беловатого полулуния луночки ногтя из-под задней ногтевой щели. Большая часть ногтевой пластинки, расположенная на ногтевом ложе, образует тело ногтя. Участок эпителия ногтевого ложа с размножающимися эпителиальными клетками, где расположен корень ногтя, называется ногтевой матрицей. В ней постоянно происходит деление и ороговение клеток, необходимое для роста ногтей. Образующиеся роговые чешуйки смещаются в роговую ногтевую пластинку так идет рост ногтя.



Общая характеристика мочевых путей
В организме человека выделительную функцию удаление шлаков выполняет ряд органов и систем (кожа, легкие, пищеварительная трубка). Однако главенствующая роль принадлежит мочевым органам: почкам, как мочеобразующим органам (с мочой выделяется большая часть шлаков нашего организма), и мочевыводящим органам (чашечки, лоханки, мочеточники, мочевой пузырь, мочеиспускательный канал). Почки кроме выделительной мочеобразующей функции выполняют и другие функции: эндокринную, поддерживают гомеостаз, регулируют водно-солевой обмен, кислотно-щелочное состояние крови.
У человека в эмбриональном периоде последовательно закладываются три пары почек. Передняя или предпочка образуется из передних 810 сегментных ножек мезодермы. Предпочка не функционирует и подвергается обратному развитию. Далее появляется первичная почка, функционирующая в первой половине эмбриогенеза. Она формируется из большого числа сегментных ножек туловища зародыша. Сегментные ножки превращаются в канальцы первичной почки, растущие по направлению к мезонефральному протоку (оставшемуся от предпочки) и открываются в него своими дистальными концами. А их проксимальные слепые концы идут навстречу капиллярным клубочкам, отходящим от аорты, обрастают эти клубочки и формируют вместе с ними почечные тельца. Мезонефральный проток открывается в заднюю кишку.
Окончательная почка закладывается у эмбриона человека на втором месяце, начинает функционировать во второй половине эмбриогенеза и заканчивает свое развитие после рождения человека. Эта почка формируется из нейрогенной ткани (неразделенные на сегменты участки мезодермы в каудальной части зародыша). Из этой ткани возникают почечные канальцы, одним концом охватывающие капиллярные веточки аорты и образующие вместе с ними почечные тельца, а другим концом впадающие в собирательные трубочки. Вторым источником является мезонефральный проток, на которого формируются собирательные трубочки, сосочковые канальцы, почечные чашечки, лоханки и мочеточники.
Почки снаружи покрыты соединительнотканной капсулой. Вещество ночки подразделяется на темно-красное корковое, расположенное под капсулой по периферии органа и более светлое мозговое, разделенное на пирамиды. Корковое вещество проникает в мозговое в виде почечных колонок, а мозговое в виде тонких мозговых лучей в корковое. От капсулы внутрь органа отходят соединительнотканные прослойки с сосудами и нервами. В основном ночка эпителиальный орган, представленный системой эпителиальных трубочек, формирующих нефроны структурно-функциональные единицы почек. В состав нефрона входят: капсула клубочка с ее полостью, проксимальный каналец (извитой и прямой), тонкий каналец с нисходящей и восходящей частью, дистальный (прямой и извитой) каналец. Тонкий каналец вместе с дистальным прямым канальцем образуют петлю нефрона. Нефрон продолжается в собирательные почечные трубочки, открывающиеся в сосочковый канал. Капсула клубочка, охватывающая капиллярный клубочек, формирует почечное тельце. Большая часть почечных телец располагается в корковом веществе это корковые нефроны, их 80%, остальные 20% нефронов околомозговые или юкстамедуллярные. Их почечные тельца располагаются на границе коркового и мозгового вещества. Поэтому корковое и мозговое вещество образовано разными частями нефронов. Корковое вещество преимущественно образовано почечными тельцами, проксимальными и дистальными извитыми канальцами. Мозговое же вещество состоит из прямых нисходящих и восходящих отделов нетель нефрона, а также собирательных трубочек и сосочковых каналов.
Гистофизиология почек неразрывно связана с их кровоснабжением.
Почечные артерии распадаются на междолевые, которые на границе коркового и мозгового вещества разветвляются на дуговые (но ним определяют границу коркового и мозгового вещества). От дуговых артерий отходят междольковые, в свою очередь разветвляющиеся на внутридольковые артерии. Последние распадаются на приносящие артериолы, направляющиеся к корковым нефронам от верхних внутридольковых и к юкстамедуллярным от нижних внутридольковых артерий. Соответственно этому различают корковое кровоснабжение, обслуживающее корковые нефроны, и юкстамедуллярное, кровоснабжающее околомозговые нефроны. Приносящие артериолы разветвляются на капилляры, образующие сосудистые клубочки почечных нефронов. С возрастом количество клубочков на единицу поверхности почек уменьшается. Так, у новорожденных их 50, а у взрослых 46. Из капилляров клубочка образуются выносящие артериолы, которые в корковом веществе имеют меньший диаметр, чем приносящие. Этим самым создается высокое кровяное давление в корковых клубочках (свыше 50 мм рт. ст.), обеспечивающее процесс фильтрации жидкости и веществ из плазмы крови в нефрон. Выносящие артериолы вскоре вновь распадаются на капилляры перитубулярной сети, в которых относительно низкое кровяное давление (около 1012 мм рт. ст.), способствующее второй фазе мочеобразования реабсорбции (обратному всасыванию части жидкости и веществ из нефрона в кровь). Из капилляров перитубулярной сети кровь вливается в звездчатые вены в верхних отделах коркового вещества, а затем в междольковые вены или сразу в междольковые в средних отделах коркового вещества. Далее следуют дуговые вены, междолевые и почечные вены, выходящие из ворот почки.
В околомозговых нефронах приносящие и выносящие артериолы одинаковы по диаметру или даже выносящие имеют несколько больший диаметр. Это приводит к тому, что кровяное давление в юкстамедуллярных нефронах ниже, чем в корковых. Выносящие артериолы околомозговых нефронов в мозговом веществе распадаются на прямые сосуды (пучки тонкостенных сосудов более крупные, чем обычные капилляры). В мозговом веществе от выносящих артериол и от прямых сосудов образуются сосуды мозговой перитубулярной сети. Перитубулярная сеть развита слабее, чем в корковом веществе. Нисходящие и восходящие ветви прямых сосудов образуют противоточную систему сосудов сосудистый пучок. Капилляры мозгового вещества собираются в прямые вены. В экстремальных условиях, при выполнении человеком тяжелой работы околомозговое кровоснабжение играет роль более короткого и легкого пути (более низкое давление, слабое развитие перитубулярной сети).
Структура и функции нефрона. Сосудистый капиллярный клубочек (более 50 капилляров) охватывается двухслойной капсулой и, таким образом, формируется почечное тельце. Эндотелиальные клетки капилляров, имеющие поры, располагаются на толстой базальной мембране. В ее среднем, более плотном слое, имеются ячейки диаметром до 7 нм. Снаружи к базальной мембране капилляра прилежит внутренний листок капсулы клубочка. Он образован крупными эпителиальными клетками подоцитами, имеющими широкие большие отростки цитотрабекулы, от которых, в свою очередь, отходят мелкие отростки цитоподии, прикрепляющиеся к трехслойной мембране. Узкие отверстия между цитоподиями через промежутки между телами подоцитов сообщаются с полостью капсулы. Наружный листок капсулы почечного тельца представлен однослойным плоским или кубическим эпителием, переходящим в эпителий проксимального отдела нефрона. Между наружным и и внутренним листками капсулы расположена полость капсулы почечного тельца, в которую фильтруются составные части плазмы крови, образуя первичную мочу. В состав почечного фильтра входит фенестрированный эндотелий капилляров клубочка, трехслойная базальная мембрана с ячейками, подоциты с щелями между их цитоподиями. Между капиллярными петлями клубочка располагаются мезангиальные клетки, вырабатывающие основное вещество. Часть мезангиальных клеток является макрофагами. Из полости капсулы почечного тельца фильтрат первичной мочи поступает в проксимальный отдел.
Стенка проксимального отдела выстлана однослойным кубическим или призматическим эпителием с мутной цитоплазмой. Просвет канальца неровный, имеет щеточную каемку с высокой активностью щелочной фосфатазы, с чем связывают обратное всасывание глюкозы. Находящиеся в цитоплазме клеток канальца лизосомы с протеолитическими ферментами и пиноцитозные пузырьки участвуют в реабсорбции белков, прошедших через почечный фильтр. В базальных частях клеток имеются складки, расположенные между ними митохондрии образуют базальную исчерченность в проксимальных канальцах. Митохондриям с их ферментами придается большая роль в обратном всасывании электролитов, а базальные складки участвуют в пассивной реабсорбции воды в проксимальных канальцах почек. Далее моча поступает в тонкий каналец петли, сначала в нисходящую часть, а затем в восходящую. Нисходящая часть образована однослойным плоским эпителием, ядросодержащая часть клеток которого выступает в просвет канальца. Восходящая часть выстлана однослойным кубическим эпителием, с пенистой цитоплазмой, просвет канальца неровный, небольшой. Затем следует дистальный каналец с однослойным кубическим светлым эпителием и ровным, хорошо контурированным просветом. Щеточная каемка отсутствует, а базальная исчерченность выражена. Это каналец участвует в реабсорбции электролитов (натрия, хлоридов и др.) и в пассивном обратном всасывании воды. Собирательные трубочки имеют ровный широкий просвет и также участвуют в обратном всасывании воды. Они выстланы однослойным очень светлоокрашенным кубическим эпителием с четкими клеточными границами. В эпителии собирательных трубочек различают два тина клеток: светлые, бедные органеллами, завершающие пассивную реабсорбцию воды, и немногочисленные темные клетки, подкисляющие реакцию мочи.
Таким образом, процесс образования мочи это сложный процесс, в котором можно выделить три фазы: фильтрацию, реабсорбцию, секрецию. В почечных тельцах происходит первая фаза мочеобразования фильтрация. Почечный фильтр (см. выше) задерживает в крови клеточные элементы крови и белки плазмы крови с крупными молекулами, более 7 нм. При повреждении фильтра в моче могут появляться белки и форменные элементы крови. В результате фильтрации образуется первичная моча (более 100 литров в сутки). В канальцах почки протекает вторая фаза мочеобразования реабсорбция, обратное всасывание веществ из мочи в кровь. Поэтому из мочи исчезает полностью сахар и белок (реабсорбция в проксимальных отделах) и вследствие обратного всасывания воды в проксимальном, дистальном отделах и собирательных трубочках снижается количество воды в моче. Реабсорбция натрия в дистальных отделах нефрона усиливается под действием альдестерона. А реабсорбция воды усиливается под действием антидиуретического гормона в остальных канальцах нефрона и в собирательных трубочках. Под влиянием гормона стенка канальца становится проницаемой для воды, выходящий пассивно путем осмоса в гипертоническую среду интерстиция мозгового вещества, а потом в сосуды. Прямые сосуды (сосудистые пучки) принимают воду из собирательных трубочек, поддерживая градиент концентрации между содержимым собирательных трубочек и окружающей их гипертонической средой.
Почки кроме основной функции мочеобразовании также выполняют эндокринные функции. К эндокринному аппарату почки относятся рениновый юкстагломерулярный аппарат (ЮГА) и простагландинованный аппарат. К ЮГА принадлежат юкстагломерулярные (околоклубочковые) клетки, плотное пятно и юкста-васкулярные клетки. Юкстагломерулярные клетки находятся в стенке выносящих и приносящих артериол под эндотелием. Плотное пятно это участок дистального отдела, располагающийся между приносящий и выносящей артериолой. В дистальном отделе отсутствуют базальная мембрана, имеются высокие клетки, улавливающие изменение содержания натрия в моче и воздействующие на околоклубочковые юкстагломерулярные клетки, вырабатывающие ренин. Ренин запускает ангиотензинную систему, оказывающую сосудосуживающий эффект, а также стимулирующее влиянии на продукцию альдостерона. Отростчатые юкставаскулярные клетки (клетки Гурмагтига) располагаются в треугольнике между плотным пятном, приносящей и выносящей артериолами. Они контактируют с мезангием клубочка и, по-видимому, также участвуют в продукции ренина. Возможно, что ЮГА вырабатывает также эритропоэтины. Простагландиновый аппарат почек представлен интерстициальными клетками мезенхимной природы, располагающимися в мозговом веществе. Эти отростчатые клетки с липидными гранулами продуцируют простагландин, снижающий кровяное давление. Полагают, что вторым источником простагландинов являются светлые клетки собирательных трубочек. Эндокринный комплекс почек оказывает свое влияние на мочеобразование через регуляцию общего и почечного кровообращения.
Мочевыводящие пути включают в свой состав чашечки, лоханки, мочеточники, мочевой пузырь и мочеиспускательный канал, выполняющий одновременно функцию выведения спермы у мужчин. Строение этих путей имеет сходные черты. В них выделяют слизистую, подслизистую, мышечную и наружную оболочки. Складчатая слизистая оболочка представлена кубическим переходным эпителием, меняющим свое строение от степени растяжения стенки органа, и собственной пластинкой слизистой оболочки, постепенно переходящей в подслизистую основу.
Мышечная оболочка имеет в почечных чашечках, лоханках и в верхней части мочеточника два слоя: внутренний продольный, наружный циркулярный, а в нижних отделах мочеточника и в мочевом пузыре три слоя гладких миоцитов; внутренний и наружный продольные, а средний циркулярный.
Конец формы



15

Приложенные файлы

  • doc 23655717
    Размер файла: 510 kB Загрузок: 0

Добавить комментарий